edexcel

Mark Scheme (Results)

January 2013

GCE Biology (6BIO1) Paper 01 Lifestyle, Transport, Genes and Health

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.
Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.
Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2013
Publications Code US034271

All the material in this publication is copyright
© Pearson Education Ltd 2013

GENERAL INFORMATION

The following symbols are used in the mark schemes for all questions:

Symbol	Meaning of symbol
; semi colon	Indicates the end of a marking point
Eq	Indicates that credit should be given for other correct alternatives to a word or statement, as discussed in the Standardisation meeting
/ oblique	Words or phrases separated by an oblique are alternatives to each other
\{\} curly brackets	Indicate the beginning and end of a list of alternatives (separated by obliques) where necessary to avoid confusion
() round brackets	Words inside round brackets are to aid understanding of the marking point but are not required to award the point
[] square brackets	Words inside square brackets are instructions or guidance for examiners
[CE] or [TE]	Consecutive error / transferred error

Crossed out work

If a candidate has crossed out an answer and written new text, the crossed out work can be ignored. If the candidate has crossed out work but written no new text, the crossed out work for that question or part question should be marked, as far as it is possible to do so.

Spelling and clarity

In general, an error made in an early part of a question is penalised when it occurs but not subsequently. The candidate is penalised once only and can gain credit in later parts of the question by correct reasoning from the earlier incorrect answer.

No marks are awarded specifically for quality of language in the written papers, except for the essays in the synoptic paper. Use of English is however taken into account as follows:

- the spelling of technical terms must be sufficiently correct for the answer to be unambiguous
e.g. for amylase, 'ammalase' is acceptable whereas 'amylose' is not
e.g. for glycogen, 'glicojen' is acceptable whereas 'glucagen' is not
e.g. for ileum, 'illeum' is acceptable whereas 'ilium' is not
e.g. for mitosis, 'mytosis' is acceptable whereas 'meitosis' is not
- candidates must make their meaning clear to the examiner to gain the mark.
- a correct statement that is contradicted by an incorrect statement in the same part of an answer gains no mark - irrelevant material should be ignored

Question Number	Answer	Additional guidance	Mark
$\mathbf{1}$	1. diastole ; 2. atrium / atria ; 3. ventricles ;	1. ALLOW ventricular diastole or atrial AND ventricular diastole (together) NOT atrial diastole by itself	
4. atrioventricular / bicuspid / tricuspid ;	4. ALLOW AV , mitral		
5. semilunar (valves) ;	5. ALLOW aortic valves		

Question Number	Answer	Mark
$\mathbf{2 (b) (i) ~}$	B;	(1)

Question Number	Answer	Mark
2(b)(ii)	B ;	(1)

Question Number	Answer	Mark
2(b)(iii)	D ;	(1)

Question Number	Answer	Additional guidance	Mark
2(c)	1. tRNA is folded (and mRNA is \{straight / unfolded\}) / eq ; 2. tRNA has hydrogen bonds (holding the structure together) (but the mRNA does not / eq) ; 3. tRNA is a fixed \{size / length\} (but mRNA \{is not / length depends on size of gene\}) / eq; 4. tRNA has an anticodon (but mRNA has codons) ; 5. tRNA has an amino acid binding site ;	1. IGNORE double stranded / branched ALLOW tRNA clover shaped / looped 2. ALLOW tRNA has complementary base pairing / double stranded sections NOT (all) double stranded 4. NOT is an anticodon	(2)

Question Number	Answer	Additional guidance	Mark
3(a)	1. phospholipid (bilayer);	ALLOW a clearly labelled diagram	
2. credit details of phospholipid bilayer;	2. e.g orientation because of hydrophobic and/or hydrophilic regions eg phospholipids are fluid	4. credit details of proteins;	4. e.g. description of channel/carrier protein structure or position. (Intrinsic, extrinsic or transmembrane)
5. reference to other named membrane components ;	5.e.g. glycolipid, cholesterol, glycoprotein, carbohydrate chain, glycocalyx		

Question Number	Answer	Additional guidance	Mark
3(b)(i)	Solute P: 1. (up to 30 minutes) the \{concentration / number\} of molecules of P increases inside the cell / eq ; 2. ref to \{diffusion / facilitated diffusion\}(of molecules of P into the cell) ; 3. down the concentration gradient (of P) / eq ; 4. \{between 30 and 40 minutes / after 30 minutes $\}$ the \{concentration / number\} of molecules (of P) inside the cell stays the same / eq ; 5. concentration (of P) inside cell equals concentration outside cell / reaches equilibrium / eq ; Solute R: 6. solute R does not enter cell / eq ; 7. membrane is impermeable to R ;	IGNORE amount max 4 marks for solute P 2. NOT osmosis 3. ALLOW high to low concentration NOT high to low concentration gradient 4. ALLOW no net movement	

Question Number	Answer	Additional guidance	Mark
$\mathbf{3 (b) (i i)}$	six white circles inside and outside the cell and 4 black circles outside cell ;		(1)

Question Number	Answer	Additional guidance	Mark		
4(a)(i)	1. glucose provides respiratory substrate / eq ;	2. ALLOW needed / used for 2. to provide \{energy / eq\} for heart (muscle) \{contraction / eq\} ;	3. reference to osmotic effect ;		3. Can be expressed in a
:---					
variety of ways eg solution					
is isotonic.	\quad (2)				
:---					

Question Number	Answer	Additional guidance	Mark
4(a) (ii)	\{glucose / pH \} at same \{ concentration / volume / value / eq \} ;	IGNORE references to caffeine and temperature etc. IGNORE amount	(1)

Question Number	Answer	Additional guidance	Mark
4(a)(iii)	reference to replication procedure;	ALLOW repeats, use more than one heart NOT repeat with different concentrations	(1)

Question Number	Answer	Additional guidance	Mark
4(a)(iv)	1. the heart rate decreases (with increasing caffeine concentrations) above $0.1\left(\mathrm{mg} \mathrm{cm}^{-3}\right)$ / concentrations of a caffeine above $\{0.30$ $\left.0.34\left(\mathrm{mg} \mathrm{cm}^{-3}\right)\right\}$ the heart rate \{decreases / is lower than base rate\} / eq ; 2. up to a concentration of $\{0.30-0.34$ (mg cm^{-3}) $\}$ caffeine there is an increase in heart rate (above base rate) / eq ; 3. $\quad 0.1\left(\mathrm{mg} \mathrm{cm}^{-3}\right)$ caffeine causes the fastest heart rate / eq ; 4. credit correct manipulation of figures;	4. e.g. 20% increase with $0.1\left(\mathrm{mg} \mathrm{cm}^{-3}\right)$	

Question Number	Answer	Additional guidance	Mark
4(b)(i)	1. details of method to limit movement of Daphnia ; 2. reference to determining base heart rate (in absence of caffeine) ; 3. reference to use of range of caffeine concentrations ; 4. acclimatisation of Daphnia (in each solution) / eq ; 5. details of method to determine heart rate; 6. repeats / replicates; 7. Named control variable e.g. \{source / size / age / type / eq\} of Daphnia, temperature, pH ;	1. e.g. use of cotton wool IGNORE cavity slide 2. ALLOW measure heart rate in 0\% caffeine NOT distilled water 5. eg dots on paper in a set time / use video camera IGNORE just counting	(4)

Question Number	Answer	Additional guidance	Mark
4(b)(ii)	chicken (embryo) \{is a vertebrate / feels pain / will die / cannot give consent/ eq \} ;		

Question Number	Answer	Additional guidance	Mark
5(a)(i)	1. Idea that there is a \{thick wall / lots of collagen / thick layers / thick tunica media / eq\} ;	Max 2 marks for structural features only. Functions need to be in correct context	1. ALLOW idea of folded wall

Question Number	Answer	Additional guidance	Mark
5(a)(ii)	1. capillary walls are one cell thick / eq ;	ALLOW converse statements 2LLOW statements that only no \{ellastic tissue / multiple /ayers / eq \} in the capillary (walls) ; mention capillary or vein - but do not credit same mark point twice 1. and 4. IGNORE capillaries are one cell thick alone	
3. no valves in capillaries ; 4. capillaries have a very narrow lumen / eq ;	5. capillaries are porous / have pores;	(2)	

Question Number	Answer	Additional guidance	Mark
5(b)(i)	1. idea that the area of dead heart muscle will be \{downstream of the atheroma / in region normally supplied by the blocked artery / eq\} ; 2. idea that each artery supplies (cells) with \{oxygen / glucose / oxygenated blood \} ; 3. idea that \{cells / muscle / tissue / eq\} (supplied by the blocked vessel) will die due to lack of \{energy / respiration\} ; 4. idea that if the atheroma is located \{near the end of an artery / in a small artery $\}$ then the area of dead muscle will be small ;	4. ALLOW converse	(3)

Question Number	Answer	Additional guidance	Mark
5(b)(ii)	1. shaded area should not extend above position B ;	2. shaded area should be around all the vessels on the right side of the diagram but not overlap with those on the left ;	(2)

Question Number	Answer	Comments	Mark
6(a)	(QWC- Spelling of technical terms must be correct and the answer must be organised in a logical sequence) 1. (a) glucose ; 2. glycosidic \{bonds / links\} ; 3. amylose and amylopectin ; 4. amylose has 1-4 (glycosidic) \{bonds / links\} AND amylopectin has 14 and 1-6 (glycosidic) bonds / eq ; 5. amylose is \{spiralled / coiled\} ; 6. amylopectin is branched / eq ; 7. compact molecule / eq ;	QWC spelling of words in italics should be correct. Penalise just once - ALLOW max score of 5 if 6 mpts met but one lost due to spelling mistake.	(5)

Question Number	Answer	Additional guidance	Mark
6(b)(i)	1. speeds up the rate of reaction / eq ;	2. without being \{changed/used up / eq\};	3. lowers activation energy / provides an alternative reaction pathway / eq ;
4. does not change \{products / position of equilibrium / eq \} /eq;	(2)		

Question Number	Answer	Additional guidance	Mark
6(b)(ii)	1. breaks the (glycosidic) bonds / eq ;	1. IGNORE hydrogen bonds	
2. reference to use of water;	2. NOT makes water / eq	(2)	

Question Number	Answer	Additional guidance	Mark
$\mathbf{6 (c)}$	idea that \{ maltose / disaccharide / glucose / monosaccharide\} \{is produced / tastes sweet\} ;	ALLOW dextrins / sugar NOT any other named sugar eg sucrose	(1)

Question Number	Answer	Additional guidance	Mark
$\mathbf{7 (a)}$	Idea that (a change in) one variable (directly) results in the change of another variable;	ALLOW causes, affects, etc and clear examples Eg increase in blood cholesterol causes an increase in the risk of CVD	IGNORE correlation, link, relationship, trend, etc alone

Question Number	Answer	Additional guidance	Mark
7(b)(i)	1. reference to peptide bonds (joining amino acids); 2. between amino group (of one amino acid) and carboxyl group (of another) / eq ; 3. the sequence of amino acids is the primary structure of the protein / eq ; 4. reference to folding (of primary structure) held together by bonds / eq ; 5. \{disulfide bridges / eq\} / \{hydrogen / H \} bonds / ionic bonds / Van der Waals forces ; 6. between the R groups / eq ;	2. ALLOW from a labelled diagram ALLOW NH2 and COOH 4. ALLOW ref to alpha helix or beta pleated sheet	(4)

Question Number	Answer	Additional guidance	Mark
7 (b)(ii)	1. HDL is smaller ; 2. HDL contains more protein / eq ;	ALLOW converse for LDL	
3. HDL contains less cholesterol / eq ;		(2)	

Question Number	Answer	Additional guidance	Mark
7(c)(i)	1. (risk due to) high blood pressure has fallen overall / eq ; 2. (risk due to) high blood cholesterol has fallen overall / eq; 3. (risk due to) obesity has risen overall / eq ; 4. obesity was the lowest risk factor but is now the highest / eq ; 5. credit use of manipulated figures ;	Answers should cover total time period and not just 1980-1990 5. only credit overall change figures e.g. 17\% drop for high blood pressure 16% drop for high blood cholesterol 10.5% increase in obesity	(3)

Question Number	Answer	Additional guidance	Mark
7(c)(ii)	1. people more aware of the risks / eq ; 2. people consuming foods with lower \{cholesterol levels / saturated fats / eq\} / eq ; 3. people consuming foods with more fibre in them / eq ; 4. use of statins / eq ; 5. more screening / eq ; 6. more exercise / eq ;	1. ALLOW more aware of healthy diets 4. Use of sterols/named example 5. ALLOW self testing	(2)

Question Number	Answer	Additional guidance	Mark
7(c)(iii)	Any two from:		
(being) male increase in age lack of exercise / inactivity smoking genetics high alcohol consumption high salt diet high saturated fat intake stress diabetes ;	IGNORE fat, LDL or cholesterol consumption	(1)	

Question Number	Answer	Additional guidance	Mark
$\mathbf{8 (a)}$	1. (the disorder results from a) defect in genes / eq ;	1. ALLOW faulty allele	
	2. both (defective) alleles need to be present / homozygous / not expressed in the presence of a dominant allele / eq ;	(2)	

Question Number	Answer	Mark
$\mathbf{8 (b) (\mathbf { i })}$	A;	(1)

Question Number	Answer	Mark
$\mathbf{8 (b) (i i) ~}$	C;	(1)

Question Number	Answer	Mark
$\mathbf{8 (b) (i i i) ~}$	A;	(1)

Question Number	Answer	Mark
$\mathbf{8 (b) (i v) ~}$	D ;	(1)

