Pearson Edexcel

Mark Scheme (Results)

Summer 2018

Pearson Edexcel International GCSE In Mathematics A (4MA0) Paper 4HR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at ww.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018
Publications Code 4MAO_4HR_1806_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

- Abbreviations

- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- eeoo - each error or omission
- No working

If no working is shown then correct answers normally score full marks
If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.
If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.
If there is no answer on the answer line then check the working for an obvious answer.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

International GCSE Maths

Apart from questions 2(a)(ii), 7, 10(a), 12, 15(c), 19, 20, 22 and 25 (where the mark scheme states otherwise) the correct answer, unless clearly obtained from an incorrect method, should be taken to imply a correct method.

Question	Working	Answer	Mark	Notes
$\mathbf{1}$		$2,20,29$	3	M2for 3 number selected with at least two of the properties: mean $=17$, median $=20$, range $=27$ else M1 with one of these properties

Alternative

| 1 | $17 \times 3(=51)$
 $17 \times 3-20(=31)$
 1 | $2,20,29$ | 3 | M1 method to find sum of 3 numbers |
| :--- | :--- | :--- | :--- | :--- | :--- |

$\mathbf{1}$	$x, 20, z$ or x, y, z and $y=20$ $x+z=31$ or $\frac{x+20+z}{3}=17$ oe or $z-x=27$ or $x-z=27$	$2,20,29$	3	M1 use of different letters with 20 shown as the middle value on equation for the sum or for the difference of the two unknown numbers

Question	Working	Answer	Mark	Notes
9 (a)		$27 a^{6} b^{12}$	2	B2 fully correct B1 for 2 of the three terms correct in a product.
(b)	$4 g-8 h+10 g-15 h$	$14 g-23 h$	2	M1 Expanding brackets with 3 of 4 terms correct.
				A1 Fully correct
(c)	$y^{2}-7 y+5 y-35$	$y^{2}-2 y-35$	2	M1 Any 3 terms correct or 4 correct terms ignoring signs or $y^{2}-2 y+/-\ldots$ or ... $-2 y-35$
				A1
(d)	$\begin{aligned} & -5-3 \leqslant 2 p<13-3 \text { or } \\ & -5-3 \leqslant 2 p \text { and } 2 p<13-3 \text { or } \\ & -\frac{5}{2} \leqslant \frac{2 p+3}{2}<\frac{13}{2} \text { or } \\ & -\frac{5}{2} \leqslant \frac{2 p+3}{2} \text { and } p+\frac{3}{2}<\frac{13}{2} \end{aligned}$	$-4 \leqslant p<5$	3	M2 Correctly subtracting 3 from each part of the inequality or dividing each term by 2 or $(p=)-4$ and $(p=) 5$ M1 for one end correct e.g. $2 p \geqslant-5-3$ or $\frac{2 p+3}{2}<\frac{13}{2}$ or $(p=)-4$ or $(p=) 5$
				A1 accept $p \geq-4$ and $p<5$

Question	Working	Answer	Mark	Notes
10 (a)	eg $280=2 \times 140=2 \times 2 \times 70(=2 \times 2 \times 2 \times 35$ $=2 \times 2 \times 2 \times 5 \times 7)$ eg $280=10 \times 28=2 \times 5 \times 28(=2 \times 5 \times 2 \times 14$ $=2 \times 5 \times 2 \times 2 \times 7)$ $2,2,2,5,7$	$2 \times 2 \times 2 \times 5 \times 7$	3	M1for at least first 2 correct steps in repeated factorisation (may be seen in a tree diagram)
(b)	$2,3,3,5,7$ or $2,5,7,9$ or $280=2 \times 2 \times 70$ and $630=3 \times 3 \times 70$			A1depFor all correct factors, may include 1

Total 5 marks

| $\mathbf{1 1}$ | $10-3$ | 7 | 2 | M1 10 and 3 identified |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | A1 | | |

Total 2 marks

Question	Working	Answer	Mark		Notes
12	e.g. $4(5 x-2)+3(3-5 x)=2 \times 12$ or $\frac{4(5 x-2)}{12}+\frac{3(3-5 x)}{12} \text { or } \frac{4(5 x-2)+3(3-5 x)}{12}$	4.6	4	M1	For clear intention to multiply all terms by 12 or a multiple of 12 or to express LHS as a single fraction or as the sum of a pair of fractions with a common denominator of 12 or a multiple of 12
	$\begin{aligned} & 20 x-8+9-15 x=2 \times 12 \text { or } \\ & \frac{20 x-8+9-15 x}{12}=2 \text { or } \frac{20 x-8}{12}+\frac{9-15 x}{12}=2 \end{aligned}$			M1	Expanding brackets correctly in a correct equation.
	$\begin{aligned} & 5 x=23 \text { or } 20 x-15 x=24+8-9 \text { or } \\ & 20 x-15 x=24-1 \text { oe } \end{aligned}$			M1	For correct rearrangement of a correct equation with fractions cleared and terms in x isolated.
				A1oe	dep on at least M1
Total 4 marks					
13 (a)		3.7×10^{-5}	1	B1	
(b)		2.34×10^{9}	1	B1	
(c)	$\left(1.4 \times 10^{9}\right) \div\left(3.5 \times 10^{7}\right) \text { or } \frac{1400000000}{35000000}$	40	2	M1 or for an answer equivalent to 4×10^{n} where n is an integer, e.g. $4,4 \times 10^{-2}, 4000,0.4 \times 10^{3}$	
				A1	Accept 4×10^{1} or 4×10

Question	Working	Answer	Mark	Notes
$\mathbf{1 4}$ (a)		$\frac{4}{7}$	2	B1For left branch correct $0.57(142 \ldots)$
(b)		$\frac{3}{7} \times \frac{4}{9}$	$\frac{4}{9}, \frac{5}{9}, \frac{4}{9}, \frac{5}{9}$	

Total 4 marks

15 (a)		-18, 2, 24	2	B2	For 3 correct values or B1 for 2 correct values
(b)		Correct curve	2	M1ft	if at least B1 scored in (a) At least 5 points plotted correctly Plotting tolerance $\pm 1 / 2 \mathrm{sq}$
				A1	Through 7 correct points
(c)	$x^{3}-2 x+3=3 x+2$	$\begin{gathered} -2.3 \\ 0.2 \\ 2.1 \end{gathered}$	3	M1	For identifying ($y=$) $3 x+2$
	$y=3 x+2$			M1	For drawing correct line
				A1	dep on correct line drawn 3 correct x values in intervals: $[-2.5,-2.2]$ [0.1, 0.3] [2.0, 2.2] ft dep on M1 in (b), correct line drawn and 3 points of intersection

Question	Working	Answer	Mark	Notes
16	$p^{2}=\frac{w+4}{w-2}$	$w=\frac{2 p^{2}+4}{p^{2}-1}$	4	M1 For squaring both sides
	$p^{2}(w-2)=w+4$			M1 For multiplying both sides by $(w-2)$
	$p^{2} w-w=4+2 p^{2}$ or $-4-2 p^{2}=w-p^{2} w$			M1 For isolating terms in w in a correct equation.
				A1 oe $w=\frac{-2 p^{2}-4}{1-p^{2}}$
				Total 4 marks
17	$A P \times 4.4=5.5 \times 2.4 \text { or } \frac{A P}{5.5}=\frac{2.4}{4.4} \text { oe }$	3	2	M1
				A1
				Total 2 marks

Question	Working	Answer	Mark	Notes
18 (a)	$15 \div(80-50)(=0.5)$	28, 18	2	M1 correct method to find fd for interval $50<t \leqslant 80$ or one correct frequency for $80<t \leqslant 120$ or $120<t \leqslant 180$ or 0.5 shown correctly on fd axis $(1 \mathrm{~cm}=$ 0.1) or 10 small squares $=1$ person oe
				A1 Both values correct
(b)	$\begin{aligned} & \frac{10}{50-0}(=0.2), \frac{12}{240-180}(=0.2), \\ & \frac{8}{320-240}(=0.1) \end{aligned}$	Correct bars drawn	2	M1 For method to find one correct frequency density. Accept one bar drawn with correct height Accept $10 \times 10=100$ or $12 \times 10=$ 120 or $8 \times 10=80$ small squares.
	$\begin{aligned} & 0<t \leqslant 50 \mathrm{fd}=0.2 \text { (height } 2 \mathrm{~cm} \text {) } \\ & 180<t \leqslant 240 \text { fd }=0.2 \text { (height } 2 \mathrm{~cm} \text {) } \\ & 240<t \leqslant 320 \mathrm{fd}=0.1 \text { (height } 1 \mathrm{~cm} \text {) } \end{aligned}$			A1 Three bars with correct widths and heights

Question	Working	Answer	Mark		Notes
19 (a)	$\begin{aligned} & (2 x+1)(x+3)-2 \times 3(=45) \text { or } \\ & (2 x+1)(x+3)-6(=45) \\ & 2 x^{2}+6 x+x+3-6=45 \end{aligned}$	$2 x^{2}+7 x-48=0$ obtained correctly.	2	M1 A1dep	A correct unsimplified expression or equation for shaded area Convincingly arriving at given equation. Expansion of brackets must be shown (3 or 4 terms).
(b)	$(x=) \frac{-7 \pm \sqrt{7^{2}-4 \times 2 \times-48}}{2 \times 2}\left(=\frac{-7 \pm \sqrt{49+384}}{4}\right)$	3.45	3	M1	Correct substitution into the quadratic formula, allow one sign error in numbers and + instead of \pm; discriminant must not be simplified as far as 433
				M1	dep on first M1 for simplification of discriminant to $\sqrt{433}$ or $\sqrt{49+384}$
				A1	dep on first M1 3.45(216...) Award A0 if negative root is not excluded.
		Total 5 marks			
20	$1000 x$ $=278.7878 \ldots$ $100 x$ $10 x$ $=27.8787 \ldots$ $10.7878 \ldots$ x $=0.2787 \ldots$	$\begin{aligned} & \frac{46}{165} \\ & \text { correctly shown } \end{aligned}$	2	M1	Two appropriate equations selected for use. e.g. $1000 x=$ $278.7878 \ldots$ and $10 x=2.7878 \ldots$
	$990 x=276$ $x=\frac{276}{990}$ $99 x=27.6$ $x=\frac{27.6}{99}\left(=\frac{276}{990}\right)$				e.g. $\frac{276}{990}=\frac{46}{165}$ or $\frac{27.6}{99}=\frac{46}{165}$ must be shown

Question	Working	Answer	Mark	Notes
21	$\begin{aligned} & \frac{(x+3)(x-3)-(x+4)(x-4)}{(x-3)(x-4)} \text { or } \\ & \frac{(x+3)(x-3)}{(x-3)(x-4)}-\frac{(x+4)(x-4)}{(x-3)(x-4)} \text { oe } \end{aligned}$	$\frac{7}{(x-3)(x-4)}$	3	M1 For a correct expression as one fraction or as two fractions with a common denominator
	$\frac{\left(x^{2}-3 x+3 x-9\right)-\left(x^{2}-4 x+4 x-16\right)}{(x-3)(x-4)} \text { or }$			M1 Correct expansion of $(x-3)(x+3)$ and $(x-4)(x+4)$ in a single correct fraction
	$\frac{\left(x^{2}-9\right)-\left(x^{2}-16\right)}{(x-3)(x-4)}$ or $\frac{x^{2}-9-x^{2}+16}{(x-3)(x-4)}$ oe			A1 Accept $\frac{7}{x^{2}-7 x+12}$

22	$\frac{5^{n^{2}+n^{2}-5 n}}{5^{6+3}}(=125)$ or $5^{n^{2}-6} \times 5^{n^{2}-5 n-3}(=125)$ or	4	5

$$
5^{n^{2}+n^{2}-5 n-9}(=125) \text { or } 5^{n^{2}+n^{2}-5 n}=125 \times 5^{9}
$$

$$
5^{n^{2}+n^{2}-5 n}=5^{12} \text { or } 5^{n^{2}+n^{2}-5 n-9}=5^{3} \text { or }
$$

$$
5^{n^{2}+n^{2}-5 n-9-3}=5^{0}
$$

$$
\text { e.g. } 2 n^{2}-5 n-12(=0) \text { or } 2 n^{2}-5 n=12
$$

$$
(2 n+3)(n-4)(=0) \text { or }
$$

$$
n=\frac{5 \pm \sqrt{(-5)^{2}-4 \times 2 \times-12}}{2 \times 2}=\left(=\frac{5 \pm \sqrt{25+96}}{4}\right)
$$

Total 3 marks
M1 For simplifying the LHS to a product or quotient of two single powers of 5 or for an equation with 125 and at most a single power of 5 on each side.

M1 For simplifying both sides to a single power of 5

A1 A correct quadratic equation in n, simplified to three terms in any position.
M1 A correct factorisation or correct substitution into the quadratic formula or correctly completing the square.
A1 dep on correct quadratic equation
Award A0 if negative root is not excluded.

Question	Working	Answer	Mark	Notes	
23	$\begin{aligned} & 1 / 2 \text { side of square }=11 \cos 72(=\mathbf{3 . 3 9 9 1} \ldots) \text { or } \\ & 11 \sin 18 \\ & \text { side of square }=\frac{11 \sin 36}{\sin 72}(=\mathbf{6 . 7 9 8 3} \ldots) \text { or } \\ & \sqrt{11^{2}+11^{2}-2 \times 11 \times 11 \times \cos (36)} \text { or } 2 \times 11 \cos 72 \end{aligned}$	9.89	4	M1	For a complete correct method to find a length identified as side of square or $1 / 2$ side of square.
	$\begin{aligned} & \text { ht of triangular face }=11 \sin 72(=\mathbf{1 0 . 4 6 1 6} \ldots) \\ & \text { or } 11 \cos 18 \text { or } \sqrt{11^{2}-(" 3.3991 \ldots . . ")^{2}} \\ & \text { diagonal of base }=\frac{" 6.7983 \ldots{ }^{2}}{\cos 45}(=\mathbf{9 . 6 1 4 3 \ldots)} \text { or } \\ & \frac{" 6.7983 \ldots "}{\sin 45} \text { or } \sqrt{(" 6.7983 \ldots . .)^{2}+(" 6.7983 \ldots ")^{2}} \\ & 1 / 2 \text { diagonal of base }=\frac{" 3.3991 \ldots "}{\cos 45}(=\mathbf{4 . 8 0 7 1 \ldots)} \text { or } \\ & \frac{" 3.3991 \ldots "}{\sin 45} \text { or } \sqrt{(" 3.3991 \ldots . .)^{2}+(" 3.3991 \ldots ")^{2}} \text { or } \\ & " 6.7983 \ldots \cos 45 \text { or "6.7983..."sin } 45 \\ & \hline \end{aligned}$			M1	For complete correct method to find a length identified as height of triangular face, or diagonal of base or $1 / 2$ diagonal of base
	$O P=\sqrt{(" 10.4616 \ldots . . ")^{2}-(" 3.3991 \ldots . . ")^{2}}$ or			M1	A correct method to find $O P$
	$\sqrt{11^{2}-\left(\frac{1}{2} \times " 9.6143 \ldots . . "\right)^{2}} \text { or } \sqrt{11^{2}-(" 4.8071 \ldots ")^{2}}$			A1	Allow 9.8-9.95 SC B1 If no other marks are scored, award B1 for $11 \sin 72$ seen.

Question	Working	Answer	Mark		Notes
24	$\frac{360}{5}(=72)$ oe or $\frac{1}{2} \times \frac{(5-2) 180}{5}(=54)$ oe	16.5	4	M1	A correct method to find an angle in a triangle formed by two radii and a side of the pentagon.
	$\frac{72}{360} \times 2 \times \pi \times 6.8\left(=\frac{68 \pi}{25}=8.54(5) \ldots\right) \mathrm{oe}$			M1	A correct method to find arc length
	$\begin{aligned} & 2 \times 6.8 \times \sin 36^{\circ} \text { or } 2 \times 6.8 \times \cos 54^{\circ} \text { or } \\ & \sqrt{6.8^{2}+6.8^{2}-2 \times 6.8 \times 6.8 \times \cos 72^{\circ}} \text { or } \end{aligned}$			M1	indep A correct method to find length of chord
	$\frac{6.8}{\sin 54^{\circ}} \times \sin 72^{\circ} \quad(=7.99(3) \ldots)$			A1	Allow 16.5-16.6

| 25 | $11.45,11.55,5.05,5.15$
 $11.55^{3}(=1540(.798875 \ldots))$
 $\frac{4}{3} \times \pi \times 5.05^{3}(=539(.53429 \ldots))$ | 4 | M1For a correct upper or lower
 bound for either number |
| :--- | :--- | :---: | :---: | :--- |

