

Mark Scheme (Results)

January 2023

Pearson Edexcel International GCSE In Mathematics A (4MA1) Paper 1HR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2023

Question Paper Log Number P72438A

Publications Code 4MA1_1HR_MS_2023

All the material in this publication is copyright

© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded.
 Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
 - Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark

- o M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- o cao correct answer only
- ft follow through
- o isw ignore subsequent working
- SC special case
- oe or equivalent (and appropriate)

- o dep dependent
- o indep independent
- awrt answer which rounds to
- o eeoo each error or omission

No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review. If there is a choice of methods shown, mark the method that leads to the answer on the answer line; where no answer is given on the answer line, award the lowest mark from the methods shown.

If there is no answer on the answer line then check the working for an obvious answer.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

International GCSE Maths

Apart from questions 6, 13, 14, 15c, 18, 24 (where the mark scheme states otherwise) the correct answer, unless clearly obtained from an incorrect method, should be taken to imply a correct method.

Incorre	ect me	thod, should be taken to imply a correct method.				
1	(a)		$48 < S \leqslant 54$	1	B1	Allow $48 - 54$ oe
	(b)	$(33 \times 4) + (39 \times 14) + (45 \times 18) + (51 \times 19) + (57 \times 5)$		4	M2	M2 for at least 4 correct products
		or 132 + 546 + 810 + 969 + 285 (= 2742)				added (need not be evaluated) or
		[lower bound products are: 120, 504, 756, 912, 270] [upper bound products are: 144, 588, 864, 1026, 300]				If not M2 then award:
		[upper bound products are: 144, 388, 804, 1020, 300]				M1 for consistent use of value
						within interval (including end
						points) for at least 4 products
						which must be added
						or
						correct midpoints used for at least
						4 products and not added
		"2742"		-	M1	dep on M1
		60				Allow division by their Σf
						provided addition or total under
						column seen
		Correct answer scores full marks (unless from obvious	45.7		A1oe	$45\frac{7}{10}$ or $\frac{457}{100}$
		incorrect working)				10 10
						(accept 46 from correct working)
						Total 5 marks

2	this t 7×3	4.8×3.6 (= 8.64) oe or 4.8×3.6 if clear intention be 2 triangles $0.6 = 25.2$	on for		3	M1	For area of 2 different faces (ie not 2 triangles) For adding together 5 areas, at least 4 of which are correct
		.8 (= 33.6) (= 42)					NB: $(3.6 + 4.8 + 6) \times 7 = 100.8$ is 3 faces
		neasurements with intention to add)					is 5 faces
		ect answer scores full marks (unless from obviou rect working)	ıs	118		A1	118.1 or 118.08
							Total 3 marks
3				(<i>x</i> =) 3	3	B1	
				(x =) 5 (y =) 6		B1	
				(z =) 10		B1	
				,			Total 3 marks
						1	
4		$1600 \times 0.16 = 256$ oe or $1 - 0.16 = 0.84$ oe			4	M1	
		1600 – "256" or 1600 × "0.84" (= 1344)				M1	
		$\frac{"1344"}{1400} (= 0.96) \text{ or } \frac{1400 - "1344"}{1400} (= 0.04) \text{ or } \frac{"1344"}{1400} \times 100 (= 96) \text{ or } \frac{1400 - "1344"}{1400} \times 100$				M1	
		Correct answer scores full marks (unless from obvious incorrect working)		4		A1	SCB1 for 1856 seen if no other marks awarded
							Total 4 marks

5	$390 \div (8-2) \ (=65) \text{ or}$ $\frac{8}{15} - \frac{2}{15} = 390 \text{ or } \frac{8}{15}x - \frac{2}{15}x = 390 \text{ or}$ $\frac{6}{15} = 390 \text{ or } \frac{6}{15}x = 390 \text{ oe}$		3	M1	$\frac{\text{M2 for}}{\frac{390 \times 15}{6}} \text{ oe}$
	"65" × (2 + 5 + 8) oe or $\frac{1}{15}$ = 65 or $\frac{1}{15}x$ = 65 or $\frac{1}{5}$ = 195 or $\frac{1}{5}x$ = 195			M1	or for 975 seen with further work and a different answer
	Correct answer scores full marks (unless from obvious incorrect working)	975		A1	SCB1 for 52, 130, 208 or 390, 975, 1560 (or 2925) or 97.5, 243.75, 390 (or 731.25) Total 3 mark

6	eg $4x + 8y = 60$ or $3x + 6y = 45$ $-\frac{4x - 6y = 4}{(14y = 56)}$ $+\frac{4x - 6y = 4}{(7x = 49)}$ eg $4x - 6\left(\frac{15 - x}{2}\right) = 4$ or $4(15 - 2y) - 6y = 4$ oe		3	M1	Correct method to eliminate <i>x</i> or <i>y</i> : coefficients of <i>x</i> or <i>y</i> the same and correct operator to eliminate selected variable (condone any one arithmetic error in multiplication) or correctly writing <i>x</i> or <i>y</i> in terms of the other variable and correctly substituting.
	eg $x+2\times 4 = 15$ or $7+2\times y = 15$	7 4		M1	dep correct method to find second variable using their value from a correct method to find first variable or for repeating above method to find second variable.
	Working required	x = 7, y = 4		A1	dep on M1
					Total 3 marks

7 (a)	0.000 0932	1	B1
(b)	2.4×10 ⁵	2	B2 If not B2, then B1 for 240 000 or
			24×10^4 oe or $2.4 \times 10^a \ a \neq 5$
(c)	1.8×10 ¹²¹	2	B2 If not B2, then B1 for 18×10^{120} or
			$1.8 \times 10^b \ b \neq 121$
			Total 5 marks

8 (a)		$3c^2(6cd^2-7)$	2	B2	fully correct or B1 for a correct partial factorisation with at least two terms outside the bracket ie $3c(6c^2d^2-7c)$ or $c^2(18cd^2-21)$ or the fully correct factor outside the bracket with two terms inside the bracket and at most one mistake $3c^2(\dots)$
(b) (i)	eg $(y\pm 6)(y\pm 3)$ or y(y+3)-6(y+3) or y(y-6)+3(y-6) [allow use of x rather than y]	(y-6)(y+3)	2	M1 A1	or $(y + a)(y + b)$ where $ab = -18$ or $a + b = -3$ or factorisation which expands to give 2 out of 3 correct terms
(ii)		6, -3	1	B1	ft must come from their factors in (b)(i)
()		2,			Total 5 marks

8(b) As we have always done, (ii) must ft from (i)

If they do nothing in (i) and then factorise and give the solutions in (ii) can we give marks retrospectively – yes, as long as nothing in (i) – this could gain M1A1B1 (correct factorisation and correct solutions) or M1A0B1 (factorisation worthy of the method mark, but not correct and ft solutions from incorrect factorisation) or M0A0B1 (incorrect factorisation that is worthy of no marks and then answers which ft from their incorrect factorisation)

What do we do if they give the incorrect factorisation in (i) and then start again in (ii), showing the correct factors and give the correct answers from their factorisation in (ii) as answers? Award M0A0 in (i) and then B1 in (ii)

What do we do if nothing is done in (i) and then we see they have used the quadratic formula and got the answers from this in (ii)? No marks at all M0A0B0

What do we do if the student has got the correct factorisation in (i) and the correct answers in (ii) but also has the quadratic formula shown in (ii)? We award M1A1B1 – assuming that the quadratic formula is a check

What if they factorise and solve in part (i) with nothing in (ii)

M1A1B1 if fully correct or M1A0B1(allowable factorisation) or M0A0B1 (ft from incorrect factorisation that is not allowable)

What if they factorise in (i) and give the correct answers for (ii) in (i) and then a different answer for the solution in (ii)

www.gradesuk.com

Award M1A1 in (i) and B0 in (ii)

What if they factorise correctly and then expand and give the original expression on the answer line – award full marks; the student knows how to factorise and is checking and gives their check as the answer.

					Total 4 marks
	Correct answer scores full marks (unless from obvious incorrect working)	12.5		A1	oe eg $\frac{25}{2}$
	$y = \sqrt{\left(\frac{7}{2}\right)^2 + ("12")^2}$ oe			M1	all values must come from a correct method
	$y^2 = \left(\frac{7}{2}\right)^2 + ("12")^2 \text{ oe } \text{ or } \frac{1}{2} \times 7 \times "\sqrt{y^2 - 3.5^2}" = 42 \text{ oe}$			M1	(indep) use of <i>their</i> height (any found value that they have called 'height')
9	$\frac{1}{2} \times 7 \times h = 42 \text{ oe or } (h =) \frac{42 \times 2}{7} (= 12) \text{ oe or}$ $3.5^2 + h^2 = y^2 \text{ or } h = \sqrt{y^2 - 3.5^2} \text{ oe}$		4	M1	A correct equation involving the height or a correct expression for height – could be in terms of <i>y</i>

$r = \frac{6}{\sin 52}$ (=7.614) oe			radius of the circle
$\mathbf{or} \ r = \frac{6}{\cos 38} \ \mathbf{oe}$			use of tan must also use
or $(r =) \sqrt{(12 \div 2)^2 + \left(\frac{12 \div 2}{\tan 52}\right)^2} \left[r = \sqrt{6^2 + 4.687^2}\right]$ oe			Pythagoras to find an expression for <i>r</i>
or $\frac{12\sin 38}{\sin 104}$ oe			
(Area =) $\pi \times ("7.61")^2$		M1	the radius must come from a completely correct method
Correct answer scores full marks (unless from obvious incorrect working)	182	A1	Accept 181 - 183
			Total 4 marks

11	(a)		7, 17, 32, 64, 80	1	B1	values seen in table
	(b)			2	M1ft	for at least 4 points plotted correctly at end of interval or for all points plotted consistently within each interval of the associated frequency table (eg at 5, 15, 25, 35, 45 or 0, 10, 20, 30, 40) at the correct height. ft their table dep on one error only in the table
		(NB: a 'bar chart' type graph scores zero marks)	correct cf graph		A1	All points plotted correctly at end of interval (tolerance 1 small square – there is an overlay) and joined with a curve or line segments accept curve that is not joined at (0, 0).
	(c)	Accept a single value in the range OR ft their cf graph	33	1	B1ft	Accept a single value in range $32 - 34$ or ft their cf graph
	(d)	NB: readings are 21 - 23 and 37 - 39 (but for this M1 these do not have to be correct if correct working is shown – eg lines or marks indicating use of CF 20 (or 20.25)and CF 60 (or 60.75) with an indication on the Time axis at the correct points (or they can just show the correct readings))		2	M1ft	For correct use of LQ and UQ and subtraction, ft from a cum freq graph provided method is shown – eg a line horizontally to the graph from readings of CF 20 and CF 60 to meet the graph and then a vertical line to the Time axis(even if wrongly read scale) or clear marks on the graph and Time axis that correspond to the correct readings or correct values from the Time axis
		Accept a single value in the range OR ft their cf graph	16		Alft	Accept a single value in range 15 to 17 or ft from their cumulative frequency graph provided method is shown eg subtraction of values that would be correct for their graph
						Total 6 marks

12	$2^{-4x} = 2^5$ or $-4x = 5$ or $-\frac{4}{5}x = 1$ oe		2	M1
	Correct answer scores full marks (unless from obvious incorrect working)	$-\frac{5}{4}$		A1 oe allow eg $\frac{5}{-4}$
				Total 2 marks

	10 000 2010 10			N / 1	E
10	eg $10\ 000x = 3818.18$		2	M1	For selecting 2 correct recurring decimals that
13	100x = 38.18				when subtracted give a whole number or
					terminating decimal (37.8 or 378 or 3780 etc)
	or $1000x = 381.818$				eg $10\ 000x = 3818.18$ and $100x = 38.1818$
	10x = 3.818				or $1000x = 381.818$ and $10x = 3.81818$
					or $100x = 38.1818$ and $x = 0.381818$
	or $100x = 38.1818$				with intention to subtract.
	x = 0.3818				(if recurring dots not shown then showing at
					least one of the numbers to at least 5 sf)
	oe				• •
					or $0.38 + 0.0018$ and eg $100x = 0.1818$,
					10000x = 18.1818 with intention to
					subtract.
	eg $10\ 000x - 100x = 3818.18 38.1818 = 3780$	shown		A1	for completion to $\frac{21}{55}$ dep on M1
	$(9900x = 3780) \text{ and } \frac{3780}{9900} = \frac{21}{55}$				55 dep on wit
	9900 55				(NB: this is a "use algebra to show that"
	or				question, so we need to see algebra as well as
	eg $1000x - 10x = 381.818 3.81818 = 378$				seeing all the stages of working to award full
	(000 = 278) and $378 = 21$				marks)
	$(990x = 378)$ and $\frac{378}{990} = \frac{21}{55}$				
	or				
	eg $100x - x = 38.1818 0.381818 = 37.8$				
	(90x - 27.8) and $37.8 21$				
	$(99x = 37.8)$ and $\frac{37.8}{99} = \frac{21}{55}$				
	or				
	eg $10\ 000x - 100x = 18.1818 0.181818 = 18$				
	and $0.38 + \frac{18}{10.000} = \frac{38 \times 99 + 18}{10.0000} = \frac{3780}{10.0000} = \frac{21}{10.0000}$ oe				
	$\frac{1}{9900} = \frac{1}{9900} = \frac{1}{9900} = \frac{1}{9900} = \frac{1}{55} = \frac$				
					Total 2 marks

(-1.5, 2.25), (-2, 3)

drawn

Answer dependent on a correct line being

14	0.515				2	M1	For either bound correct (used or
	6.25						seen)
	Working required		0.0	0824		A1	dep on M1 Allow $\frac{103}{1250}$
							Total 2 marks
15 (a)	x -2 -1 -0.5 0 1 1.5 2 y 0 2 4		2	B2	(B1 for 1	or 2 c	orrect)
(b)		correct curve	2	B2	the curve If not B2	e – che , then l	ooth curve. (there is an overlay for eck the line now for (c)) B1 for at least 5 points plotted at table dep on B1 or B2 in (a)
(c)	$2x^{3} - 6x + 4 = -3x \text{ or } x^{3} - 3x + 2 = -\frac{3}{2}x$ or $y = -\frac{3}{2}x$ seen (allow $-\frac{3}{2}x$)		3	M1	ř		
	$y = -\frac{3}{2}x$			M1	a correct	line th	at intercepts with the curve
	allow a correct line that intercepts with the curve eg of points on line $(0, 0)$, $(-1, 1.5)$,				(a correct	t line d	rawn implies M2)

(x=) -1.6

A1ft accept -1.6 or -1.7 or ft their curve/line intercept

NB: if y value given as well then M2 only

Total 7 marks

dep on a correct line being drawn

16	(a)		-0.5	1	B1	oe eg $-\frac{1}{2}$, $\frac{-1}{2}$, $\frac{1}{-2}$, $-1/2$
	(b)	(3x-5)y=2 or $(3y-5)x=2$ or		2	M1	remove denominator or get to the stage
		$3xy-5y=2$ or $3xy-5x=2$ oe or $3y-5=\frac{2}{x}$ or $3x-5=\frac{2}{y}$ oe				$3y - 5 = \frac{2}{x}$ or $3x - 5 = \frac{2}{y}$
		Correct answer scores full marks (unless from obvious incorrect working)	$\frac{2+5x}{3x}$		Aloe	eg $\frac{2}{3x} + \frac{5}{3}$ or $\frac{\frac{2}{x} + 5}{3}$ must be in terms of x
	(c)	$5(x^2-4x)$		3	M1	
		$5[(x-2)^{2}-(-2)^{2}] \text{ or } 5[(x-2)^{2}-(-2)^{2}]$ or $5(x-2)^{2}-20$ or $5[(x-2)^{2}+\frac{3}{5}]$			M1	$(-2)^2$ can be 2 ² or 4 or $\left(\pm\frac{4}{2}\right)^2$
		Correct answer scores full marks (unless from obvious incorrect working)	$5(x-2)^2+3$		A1	
						Total 6 marks
Alterr	native	mark scheme for 16c				
		$ax^2 - 2abx + ab^2 + c$		3	M1	for multiplying out $a(x-b)^2 + c$ to obtain $ax^2 - 2abx + ab^2 + c$ oe
		2 of: $a = 5$ $2ab = 20$ oe $ab^2 + c = 23$ oe			M1	for equating coefficients and making 2 correct statements
			$5(x-2)^2+3$		A1	

17	$12 = \frac{1}{2} \times 4.6 \times 8.3 \times \sin ABC$ or $\frac{4.6h}{2} = 12$ $(h = 5.217)$		5	M1	a correct equation for the area to find angle <i>ABC</i> or to find the perpendicular height of the triangle.
	$ABC = \sin^{-1}\left(\frac{12}{\frac{1}{2} \times 4.6 \times 8.3}\right) (= 38.947) \text{ oe or}$ $ABC = \sin^{-1}(0.6286) (= 38.947) \text{ or}$ $ABC = \sin^{-1}\left(\frac{"5.217"}{8.3}\right) (= 38.947) \text{ or}$ $BM^{2} = 8.3^{2} - "5.217"^{2}$			M1	A correct method to find angle <i>ABC</i> or a correct method to find <i>BM</i> ² where <i>CMB</i> is 90°
	$AC^2 = 4.6^2 + 8.3^2 - 2 \times 4.6 \times 8.3 \times \cos("38.947")$ [allow cos39°] or $AC^2 = 30.6(627)$ $BM = \sqrt{8.3^2 - "5.217"^2}$ (=6.455)			M1	a correct start to the cosine rule to find length AC or a fully correct method for <i>BM</i>
	or $AC = \sqrt{"30.6(6)"}$ or $5.5(3739)$			A1	A correct value for AC which can be the square root of $30.6(6)$
	Correct answer scores full marks (unless from obvious incorrect working)	18.4		A1	Allow answers in range 18.4 to 18.45
					Total 5 marks

18	$\sqrt{3}x - x = 6 + 2\sqrt{3} \text{ oe or } x - x\sqrt{3} = -6 - 2\sqrt{3}$ (allow $-2\sqrt{9}$ or $-2(\sqrt{3})^2$ for -6 or $2\sqrt{9}$ or $2(\sqrt{3})^2$ for 6)		4	M1	expanding bracket and collecting terms. Condone one error
	$(x=)$ $\frac{6+2\sqrt{3}}{\sqrt{3}-1}$ oe eg $\frac{-6-2\sqrt{3}}{1-\sqrt{3}}$			A1	oe must be a correct fraction with irrational numerator and denominator
	$(x =) \frac{(6+2\sqrt{3})}{(\sqrt{3}-1)} \times \frac{(\sqrt{3}+1)}{(\sqrt{3}+1)} \text{ or } \frac{(6+2\sqrt{3})(\sqrt{3}+1)}{2} \text{ oe or }$ $\frac{(6+2\sqrt{3})}{(-1+\sqrt{3})} \times \frac{(-1-\sqrt{3})}{(-1-\sqrt{3})} \text{ oe or }$ $\frac{(-6-2\sqrt{3})(1+\sqrt{3})}{(1-\sqrt{3})(1+\sqrt{3})} \text{ oe}$			M1	(indep) Multiplying the numerator and denominator of their fraction by $\sqrt{3}+1$ oe or showing 2 or -2 as the denominator and multiplying the numerator by $\sqrt{3}+1$ oe or rationalising their denominator, so long as it is of the form $p+q\sqrt{3}$ where p and q are non zero integers (condone missing brackets provided meaning is clear)
	Working required	$6+4\sqrt{3}$		A1	dep on M1A1M1 with no errors seen
					Total 4 marks

19 (a)	$P = \frac{k}{y^2}$		3	M1	oe (the constant term, k , can be any other letter apart from a or P or y)
	eg $a = \frac{k}{4^2}$ or $k = 16a$			M1	oe
	Correct answer scores full marks (unless from obvious incorrect working)	$P = \frac{16a}{y^2}$		A1	oe eg $P = 16ay^{-2}$ or $P = \frac{4^2 a}{y^2}$
(b)	$\sqrt{\frac{16a}{4a}} = c\sqrt{a} \text{ oe eg } \frac{16a}{4a} = c^2 a \text{ or } 4a = \frac{16a}{c^2 a} \text{ or } 4a \times c^2 a = 16a \text{ oe}$ or $(\text{when } P = 4a) \ y^2 = \frac{16a}{4a} \text{ or } y^2 = 4 \text{ or } y = \sqrt{\frac{16a}{4a}} (= 2) \text{ oe}$		3	M1	ft a correct formula involving the constant term (c used here) and a or ft for an expression or value of y^2 or y given for when $P = 4a$
	$c = \sqrt{\frac{4}{a}} \text{ or } c = \frac{\pm 2}{\sqrt{a}} \text{ or } c = \frac{\pm 2\sqrt{a}}{a} \text{ oe}$ allow the constant term squared eg $c^2 = \frac{16a}{4a^2} \left(= \frac{4}{a} \right)$			M1	(implies previous M1) a correct value, in terms of <i>a</i> , for the constant term or the constant term squared – need not be simplified
	Correct answer scores full marks (unless from obvious incorrect working)	$P = \frac{4a^2}{x}$		A1	oe eg $P = \frac{16a}{\frac{4x}{a}}$ or $P = \frac{16a^2}{4x}$
					Total 6 marks

20		(a =) 2 (b =) 135	2		If not B2, then B1 for one correct value
					Total 2 marks
21	$(AD =) \frac{2.2}{\tan 18}$ (= 6.77) or $(EA =) \frac{2.2}{\sin 18}$ (= 7.11)		4	M1	a correct method to find AD or AE
	$(DB =) \sqrt{("6.77")^2 + 6^2} $ (= 9.04) or $(EB =) \sqrt{6^2 + "7.11"^2} $ (= 9.31) or $(EB =) \sqrt{6^2 + "6.77"^2 + 2.2^2} $ (= 9.31)			M1	a correct method to find DB or EB
	$ tan DBE = \frac{2.2}{"9.04"} $ or $ sin DBE = \frac{2.2}{"9.31"} $ or $sin DBE = \frac{2.2 sin 90}{"9.31"}$ $ cos DBE = \frac{"9.04"}{"9.31"} $ or use of cosine rule				complete method to find one of tan <i>DBE</i> or sin <i>DBE</i> or cos <i>DBE</i> –NB: if using cosine, the student will need to have found <i>DB</i> and <i>EB</i> previously
	Correct answer scores full marks (unless from obvious incorrect working)	13.7		A1	Allow answers in range 13.59 – 13.8
					Total 4 marks

22 (a)	$\overrightarrow{ON} = \mathbf{b} + \frac{2}{5}(\mathbf{a} - \mathbf{b})$ oe or $\overrightarrow{ON} = \mathbf{a} + \frac{3}{5}(\mathbf{b} - \mathbf{a})$ oe		2	M1	
	Correct answer scores full marks (unless from obvious incorrect working)	$\frac{2}{5}\mathbf{a} + \frac{3}{5}\mathbf{b}$		A1 oe eg $\frac{1}{5}$ and one	$(2\mathbf{a} + 3\mathbf{b})$ but must be one term in \mathbf{a} in \mathbf{b}
(b)	$\overrightarrow{ME} = \frac{8}{5}\mathbf{a} - \frac{4}{5}\mathbf{b}$ $\overrightarrow{NE} = \frac{6}{5}\mathbf{a} - \frac{3}{5}\mathbf{b}$ (all oe but simplified) $\overrightarrow{MN} = \frac{2}{5}\mathbf{a} - \frac{1}{5}\mathbf{b}$		3	EM, EN ft (dep of for this r	of \overrightarrow{ME} , \overrightarrow{NE} or \overrightarrow{MN} or one of \overrightarrow{V} or \overrightarrow{NM} on M1 in (a)) their expression for \overrightarrow{ON} mark only $[\overrightarrow{ME} = \overrightarrow{ON} + \frac{6}{5}\mathbf{a} - \frac{7}{5}\mathbf{b}$ $(\overrightarrow{N} - \frac{4}{5}\mathbf{b}, \overrightarrow{NE} = -\overrightarrow{ON} + \frac{11}{3}\mathbf{a}]$
	$\overrightarrow{ME} = \frac{8}{5}\mathbf{a} - \frac{4}{5}\mathbf{b}$ $\overrightarrow{NE} = \frac{6}{5}\mathbf{a} - \frac{3}{5}\mathbf{b}$ (all oe but simplified) $\overrightarrow{MN} = \frac{2}{5}\mathbf{a} - \frac{1}{5}\mathbf{b}$			1	of \overrightarrow{ME} , \overrightarrow{NE} or \overrightarrow{MN} or two of \overrightarrow{V} or \overrightarrow{NM}
	Evidence of a vector method needed	shown		$\overrightarrow{NE} = 3 \times 3$ or show vector eg	$= 4 \times \overrightarrow{MN} \text{ or } $ $\overrightarrow{MN} \text{ or } \overrightarrow{ME} = \frac{4}{3} \times \overrightarrow{NE}$ The same are multiples of the same are the same and the same are the sa
			0		Total 5 mar

23	$\left(\frac{\mathrm{d}y}{\mathrm{d}x} = \right)16x - 14$		5	M1	Differentiation to obtain 2 terms with at least 1 correct
	16x - 14 = 10			M1	their $dy/dx = 10$ dep on M1
	(1.5, -9) or $x = 1.5, y = -9$			A1	coordinates of point on curve at which gradient is $10 - \text{allow given}$ as coordinates or as x worked out and y worked out if meaning is clear
	eg $y9 = -\frac{1}{10}(x-\frac{3}{2})$ oe or eg $-9 = -\frac{1}{10} \times 1.5 + c$ oe			M1	A correct method to find the equation for line Q using (1.5, –9)
	Correct answer scores full marks (unless from obvious incorrect working)	2x + 20y + 177 = 0		A1	oe where a , b , c are integers eg $10x + 100y + 885 = 0$
					Total 5 marks

24	$(S_{20} =)10[2A + 19 \times 11] = 10170$ oe (where A is the $u_{(k-19)}$ th term)		5	M1	
	$A = \left(\frac{10170}{10} - 19 \times 11\right) \div 2 (= 404)$			M1	
	8+(P-1)11= "404" oe (where <i>P</i> is the number of terms from 20 to the end)			M1	M2 for $8+11\times(k-20)="404"$
	$P = \frac{"404" - 8 + 11}{11} (= 37)$			M1	
	Working required	56		A1	dep on M1
	ALTERNATIVE METHOD				-
	$ (S_k =) \frac{k}{2} [2 \times 8 + (k-1)11] \text{ or } (S_{k-20} =) \frac{(k-20)}{2} [2 \times 8 + (k-21)11] \text{ or } (u_{k-19} =) 8 + 11(k-20) \text{ or } (u_k =) 8 + 11(k-1) \text{ (allow use of letter other than } k) $		5	M1	for S_k or S_{k-20} or U_k or U_{k-19} a and d must be substituted correctly
	$(S_k =) \frac{k}{2} [2 \times 8 + (k-1)11]$ and $(S_{k-20} =) \frac{(k-20)}{2} [2 \times 8 + (k-21)11]$ or			M1	For correct expressions for both S_k and S_{k-20} or U_k and U_{k-19}
	$(u_{k-19} =) 8 + 11(k-20)$ and $(u_k =) 8 + 11(k-1)$				
	$10170 = \frac{k}{2} ["16" + (k-1)11] - \frac{(k-20)}{2} ["16" + (k-21)11] \text{ oe}$ $\mathbf{or} \ 10170 = \frac{20}{2} ([8+11(k-20) + [8+11(k-1)]) \text{ oe}$			M1	
	eg $10170 = 160 + \frac{11}{2}[40k - 420]$ oe eg $440k = 24640$ or $2240 = 40k$ oe			M1	Expanding to obtain a linear equation and collecting terms in k
	Working required	56		A1	dep on M1
					Total 5 marks

www.gradesuk.com

