P Pearson Edexcel

Mark Scheme (Results)

Summer 2023

Pearson Edexcel International GCSE In Mathematics A (4MA1) Paper 2H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at .edexcel.com or btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at w.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2023
Question Paper Log Number P72828A
Publications Code 4MA1_2H_2306_MS
All the material in this publication is copyright
© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- awrt - answer which rounds to
- eeoo - each error or omission
- No working

If no working is shown, then correct answers normally score full marks.
If no working is shown, then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams) and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question. E.g. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review. If there is a choice of methods shown, mark the method that leads to the answer on the answer line; where no answer is given on the answer line, award the lowest mark from the methods shown. If there is no answer on the answer line, then check the working for an obvious answer.

- Parts of question

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another,

Brackets and speech marks:

$0.32 \times 200(=64)$ the brackets here mean that the calculation is required for the mark and not the answer - however the answer would also secure the mark. If a student gave $0.32 \times 200=68$ they would still gain the mark as the method is correct and does not require the calculation to be correct for the award of the mark.

64 alone would also gain the mark.
200 - " 146 "
This shows that the calculation requires 200 minus the calculation that gave 146 ; if the calculation was shown but inaccurately worked out then the method mark would still be gained.

Eg 146 should have come from 0.73×200
If the student had given $0.73 \times 200=156$ and then given $200-156$ this would have gained the method mark.... the 156 came from a correct calculation even though the arithmetic was incorrect.

International GCSE Maths					
Apart from questions 1, 15c, 21, 23, 25 the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method					
Q	Working	Answer	Mark		Notes
1	eg $\frac{14}{3}$ and $\frac{6}{5}$		3	M1 both fractions expressed as correct improper fractions, no need for \div or \times may be equivalent to those given eg $\frac{70}{15}$ or $\frac{18}{15}$ etc. A student could invert $\frac{6}{5}$ and go straight to the 2nd M1, this mark is then implied.	
	$\frac{14}{3} \times \frac{5}{6}$ oe or $\frac{70}{15} \div \frac{18}{15}$			M1	For inverting $2^{\text {nd }}$ fraction and showing intention to multiply or for both fractions expressed as correct equivalent fractions with the same denominator with intention to divide eg $\frac{70}{15} \div \frac{18}{15}$
	eg $\frac{14}{3} \times \frac{5}{6}=\frac{70}{18}=\frac{35}{9}=3 \frac{8}{9}$ or $\frac{14}{3} \times \frac{5}{6}=\frac{70}{18}=3 \frac{16}{18}=3 \frac{8}{9}$ or $\frac{14^{7}}{3} \times \frac{5}{6^{3}}=\frac{35}{9}=3 \frac{8}{9}$ or $\frac{14}{3} \div \frac{6}{5}=\frac{70}{15} \div \frac{18}{15}=\frac{70}{18}=\frac{35}{9}=3 \frac{8}{9}$ or correct working to $\frac{35}{9}$ and writing $3 \frac{8}{9}=\frac{35}{9}$ (may be earlier in working) working required	Shown			Dep on M2 for conclusion to $3 \frac{8}{9}$ from correct working - either sight of the result of the multiplication or division e.g. $\frac{70}{18}$ must be seen or correct cancelling prior to the multiplication to $\frac{35}{9}$ OR writing $3 \frac{8}{9}=\frac{35}{9}$ (maybe on first line of working) and correct working as far as LHS $=\frac{35}{9}$ NB: marks are awarded for use of fractions not decimals (but allow a decimal check of answer)
					Total 3 marks

5	$\begin{aligned} & 2 \text { and } 15 \text { seen or } \\ & 1 \times 2(+) 3 \times 5(=17) \end{aligned}$	$\begin{aligned} & 2 x+15 x(=85) \text { or } \\ & \frac{2}{3} y+5 y(=85) \text { or } \\ & 0.25 t \times 2+0.75 t \times 5(=85) \end{aligned}$		4	M1	For 2 and 15 oe seen or 17 or a correct equation in one unknown for number of 2 p coins (x) or number of 5 p coins (y) or total number of coins (t)
	$85 \div(2+15)(=5)$ or at least two pairs of multiples of the values of 2 and 15 (eg 4, 30; $6,45 \ldots$. .) or $10(\mathrm{p})$ (and) $75(\mathrm{p})$ or $10: 75$ or 5×2 and 15×5 $2 \times 5+5 \times 3 \times 5 \text { or }$ 20 coins	$\begin{aligned} & 17 x=85 \quad(x=5) \text { or } \\ & \frac{17}{3} y=85(y=15) \text { or } \\ & 4.25 t=85(t=20) \end{aligned}$			M1	Assumes previous M1 for number of 2 p coins or number of 5 p coins or total number of coins or value of $2 p$ coins and value of $5 p$ coins may be clearly listed eg 2555 2555 2555 2555 2555 with no ambiguity
	5 (2 p coins) and 15 (5 p coins) or $5: 15$ (if clearly identified (or used) as the key ratio eg not just part of a list) or $(3-1) \times 5$	eg 15-5 oe			M1	Correct number of 2 p coins and 5 p coins or a sum to find the difference in number of coins
Correct answer scores full marks (unless from obvious incorrect working)	Correct answer scores full marks (unless from obvious incorrect working)		10		A1	SCB1 if no other marks awarded for 21.25 in working or on answer line
						Total 4 marks

$\mathbf{6}$ (a)		7.6×10^{7}	1	B1	
	(b)		0.00054	1	B1

7	$D C O=90(\text { or right (angle) }) \text { or } D A O=90(\text { or right (angle })$ Could also be awarded for $C A O+C A D=90$ or $D A C+C A O=90$		3		may be marked on diagram - also allow right angle 'square' symbol on diagram	M2 implied by $360-90-90-48$ or $360-228$
	Obtuse $A O C=360-90-90-48(=132) \mathrm{oe}$ or Obtuse $A O C=2(180-(0.5 \times 48)-90)(=132)$ or Obtuse $A O C=180-" 24 "-$ " $24 "$ or $180-48$ (if working with $\triangle D A C$ and $\triangle O A C$) or Reflex $A O C=90+90+48$				dep on M1 being awarded may be marked on diagram	
	Correct answer scores full marks (unless from obvious incorrect working)	228		$\begin{array}{ll}\text { A1 } & \text { SC if no other marks awarded } \\ & 132 \text { gains B1 }\end{array}$		
						Total 3 marks

8	for 0.04×680 oe ($=27.2$) or 1.04×680 oe $(=707.2)$		3	M1	For finding 4% or 104% of the value	$\begin{aligned} & \hline \text { or M2 for } 680 \times 1.04^{3} \\ & \text { or } 680 \times 1.04^{4} \\ & \text { or } 795.50 \ldots \text {.. } \end{aligned}$
	$\begin{aligned} & 1.04 \times " 707.2 "(=735.488) \text { oe and } \\ & 1.04 \times " 735.488 "(=764.90752) \text { oe } \\ & \text { or } \\ & 0.04 \times(680+" 27.2 ")=0.04 \times " 707.2 "=28.288 \\ & 0.04 \times "(707.2+28.288) "=0.04 \times " 735.488 "=29.41952 \\ & " 735.488 "+" 29.41952 "=764.90752 \ldots . \end{aligned}$				for completing the method	
	Correct answer scores full marks (unless from obvious incorrect working)	765		A1 or 764-765 (if a correct answer is seen in working and then rounded incorrectly, award full marks) SC: if no other marks gained award M1 for 1.12×680 oe or 761.6(0) (or 762) or 0.12×680 oe or 81.6 (or 82) or $0.96^{3} \times 680$ oe or $601.62 \ldots$ (or 602) (accept $(1+0.04)$ as equivalent to 1.04 throughout but not $(1+4 \%))$		
						Total 3 marks

9	$\begin{aligned} & \text { For } 27 \times 1000(=27000) \text { or } \\ & \frac{27}{60 \times 60}\left(=0.0075 \text { or } \frac{3}{400}\right) \text { or } \\ & \frac{1000}{60 \times 60}\left(\frac{5}{18}=0.27(7 \ldots)\right) \end{aligned}$ or sight of 450		3		For one of $\times 1000$ (eg sight of 27000) or $(\div 60 \div 60) \text { or } \div 3600 \text { oe }$ ie correct conversion of distance units or of time units or $\frac{1000}{60 \times 60}$	M2 for $27 \div 3.6$ or $27 \times \frac{5}{18}$
	$\begin{aligned} & \frac{27 \times 1000}{60 \times 60} \text { oe eg }(0.45 \times 1000) \div 60 \text { or } \\ & 0.27 \ldots \times 27 \end{aligned}$			M1	For a fully correct method with correct use of brackets eg $27000 \div 60 \times 60$ is M1 only if not recovered	
	Correct answer scores full marks (unless from obvious incorrect working)	7.5			$\text { oe eg } \frac{15}{2} \text { or } 7 \frac{1}{2} \text { oe }$	
						Total 3 marks

10	$\begin{aligned} & 17 \times 11(=187) \text { or } 18.5 \times 12(=222) \text { or } 18 \times 9(=162) \text { or } \\ & 18.5 \times 10(=185) \end{aligned}$		4		Expression for total of \mathbf{A} or \mathbf{B} either including or excluding last round	$\begin{aligned} & \text { M2 for } \\ & 1.5 \times 11+18.5(=35) \text { or } \\ & 9 \times 0.5+18.5(=23) \\ & \text { OR } \\ & 1.5 \times 11(=16.5) \text { or } \\ & 0.5 \times 9(=4.5) \end{aligned}$
	$\begin{aligned} & 18.5 \times 12-17 \times 11(" 222 "-" 187 ")(=35) \text { or } \\ & 18.5 \times 10-18 \times 9(" 185 "-" 162 ")(=23) \text { or } \\ & \frac{" 187 "+x}{12}=18.5 \quad(x=35) \text { or } \\ & \frac{162 "+y}{10}=18.5 \quad(y=23) \text { or } \end{aligned}$ Diff between \mathbf{A} and \mathbf{B} in first rounds " 187 " - " 162 " (=25) or Diff between A and B after further round " 222 " - " 185 " ($=37$) [or 2×18.5 (= 37) (2 must come from correct working)]				expression for number of points gained by \mathbf{A} or \mathbf{B} in the last round or for an equation that could lead to the number of points gained by \mathbf{A} or \mathbf{B} in the last round	
	$\begin{aligned} & " 35 "-" 23 " \text { or } \\ & " 37 "-" 25 " \text { or } \\ & " 16.5 "-" 4.5 " \end{aligned}$			M1 calculation for difference between number of points scored in last round		
	Correct answer scores full marks (unless from obvious incorrect working)	12		A1		
						Total 4 marks

The 2 is 2 further rounds of 18.5 ie 37 comes from $18.5 \times 12-18.5 \times 10$ so the 2×18.5 is $(12-10) \times 18.5$
$\left.\begin{array}{|l|l|l|l|l|}\hline \mathbf{1 1} & \begin{array}{l}\text { eg } D E K=\frac{360}{9} \text { or } 40 \\ \text { or interior angle }=\frac{(9-2) \times 180}{9} \text { or } 140 \\ \text { or } \\ \text { OFK }=140 \div 2(=70) \\ \text { or } \\ F O K=\frac{2}{9} \times 360(=80) \\ \text { or } \\ E D K=180-0.5 \times 140(=110) \\ \text { Angles marked correctly (any exterior or interior } \\ \text { angle) gains this mark }\end{array} & \begin{array}{l}3\end{array} & \begin{array}{l}\text { M1 } \\ \begin{array}{l}\text { method to find interior or exterior } \\ \text { angle or correct interior or exterior } \\ \text { angle stated or shown correctly on } \\ \text { diagram or for using } 70^{\circ} \text { for } O F K\end{array} \\ \text { or } 80^{\circ} \text { for } F O K \text { or } 110 \text { for } E D K\end{array} \\ \text { If a student has only found an } \\ \text { interior or exterior angle and has } \\ \text { clearly mixed up interior and } \\ \text { exterior angles this mark cannot } \\ \text { be awarded but can still award for } \\ \text { any of the others angles stated }\end{array}\right]$

12	$\begin{aligned} & \cos B A D=\frac{8}{14} \text { or } \\ & \sin A B D=\frac{8}{14} \text { or } \sin A B D=\frac{8 \sin 90}{14} \text { or } \\ & (B D=) \sqrt{14^{2}-8^{2}}(=\sqrt{132}=2 \sqrt{33}=11.4(89 \ldots)) \end{aligned}$		4	M	
	$\begin{aligned} & B A D=\cos ^{-1}\left(\frac{8}{14}\right)(=55 .(15 \ldots)) \text { or } \cos ^{-1}\left(\frac{14^{2}+8^{2}-111.489^{\prime 2}}{2 \times 14 \times 8}\right) \\ & B A D=\sin ^{-1}\left(\frac{" 11.489 \ldots "}{14}\right)(=55 .(15 \ldots)) \text { or } \\ & B A D=\tan ^{-1}\left(\frac{" 11.489 \ldots "}{8}\right)(=55 .(15 \ldots)) \text { or } \\ & B A D=180-90-\sin ^{-1}\left(\frac{8}{14}\right)(=180-90-34.8 \ldots=55 .(15 \ldots) \text { oe or } \\ & C A D=180-38-\sin ^{-1}\left(\frac{8}{14}\right)-90 \quad(=180-38-34.8-90=17.2) \end{aligned}$			M	
	$\begin{aligned} & \tan (" 55.15 \ldots "-38)=\frac{C D}{8} \text { oe eg } \tan 17.2=\frac{C D}{8} \\ & \frac{C D}{\sin (55.1 \ldots-38)}=\frac{8}{\sin (90-(55.1 \ldots-38)} \text { oe } \end{aligned}$				A correct equation with $C D$ being the only unknown value
	Correct answer scores full marks (unless from obvious incorrect working)	2.47			2.44-2.48
					Total 4 marks

13 (a)		$\frac{4}{6}$		2

14 (a) (i)		90	2	B1	
(a) (ii)		Angle in a semicircle is 90° oe Angle in a semicircle is 90° oe Triangle in semicircle is 90° oe Angle at centre is double (oe eg $\times 2$) angle at circumference oe Angle at circumference is half (oe) angle at centre. oe		B	dep on B1 in (a)(i) Valid reason given, underlined words give minimally acceptable answer.
(b) (i)		22	2	B	
(b) (ii)		Angles in the same segment (are equal) or angles at the circumference subtended from the same arc of the circle or angles on the same chord		B	dep on B1 in (b)(i) Valid reason given, underlined words give minimally acceptable answer.
					Total 4 marks

15 (a)		$8 a^{9}$	2		for a fully correct answer. if not B2, then B1 for 8 or a^{9} as part of a product in answer, or final line of working
(b)		$1000 x^{3}$	2		for a fully correct answer. (B1 for final answer or final line of working with: 1000 or x^{3} as part of a product or $(10 x)^{3}$ or $\frac{1}{1000 x^{3}}$)
(c)	eg $30 \times \frac{1-2 y}{3}=30 \times \frac{4}{5}-30 \times \frac{2 y-1}{2}$ oe or eg $\frac{10(1-2 y)}{30}=\frac{6 \times 4}{30}-\frac{15(2 y-1)}{30}$ oe or eg $\frac{1-2 y}{3}=\frac{2 \times 4}{10}-\frac{5(2 y-1)}{10}$ oe or eg $10(1-2 y)=3 \times 2 \times 4-3 \times 5(2 y-1)$ oe or eg $\frac{10(1-2 y)+15(2 y-1)}{30}=\frac{4}{5}$ or $\frac{2(1-2 y)}{6}+\frac{3(2 y-1)}{6}=\frac{4}{5}$ oe (as above)		3	M1 For clear intention to multiply all terms by 30 (or $3 \times 5 \times 2$) or a multiple of 30 oe in an equation or to express all terms over 30 (or $3 \times 5 \times 2$) or a multiple of 30 oe in an equation or writing RHS over 10 or a multiple of 10 or 'cross multiplying' in an equation or bringing terms in y on LHS side and leaving $\frac{4}{5}$ on RHS and writing terms on LHS over 6 or a multiple of 6 in an equation [if expanded numerators, allow one error]	
	$\begin{aligned} & \text { eg } 10-20 y=24-30 y+15 \text { oe eg } 10 y=29 \text { or } \\ & 50-100 y+150 y-75=120 \text { oe or } \\ & 10-20 y+30 y-15=24 \text { oe } \\ & 2-4 y+6 y-3=4.8 \\ & \hline \end{aligned}$				(ft if only one error) Expanding brackets and multiplying by denominator with no more than one error in total
	Working required	2.9			oe eg $\frac{29}{10}$ or $2 \frac{9}{10}$ dep on M2
					Total 7 marks

16 (a)	$Q=k \sqrt{t}$		3	M1	for linking Q and t correctly (must have constant eg k) (allow $Q \propto k \sqrt{t}$)
	eg $6=k \sqrt{4}$ or $3=k \sqrt{1}$ or $k=3$			M1	for substituting a suitable pair of values or finding $k=3 \quad$ (allow \propto sign)
	Correct answer scores full marks (unless from obvious incorrect working)	$Q=3 \sqrt{t}$		A1	oe allow q for Q (must have $=$) allow $2.95-3.05$ for k if method clearly shown and readings correct ± 0.5 small square allow an answer of $Q=k \sqrt{t}$ with $k=3$ clearly stated
(b)	1.2^{2} or 1.44 or 144 could be within a calculation eg $\begin{aligned} & \left(\frac{3 \times 1.2}{3}\right)^{2}(=1.44) \text { or }\left(\frac{6 \times 1.2}{3}\right)^{2}(=5.76) \\ & \operatorname{eg}\left(\frac{6 \times 1.2}{" 3}\right)^{2} \div 4(=1.44) \text { or }\left(\frac{6 \times 1.2}{3}\right)^{2}-4(=1.76) \end{aligned}$ eg $6 \times 1.2=7.2$ and reading from $Q=7.2$ to t axis and calculates t value $\div 4$ (or 0.04)		2	M1ft	ft for an equation in the correct form Stating the multiplier 1.2^{2} or 1.44 or 144 or showing the multiplier within a calculation or for using a pair of values and showing a correct calculation for the increase in t, ft their k from (a) or correct calculation and use of graph
	Correct answer scores full marks (unless from obvious incorrect working)	44		A1	allow 43-45 as long as not from incorrect working
					Total 5 marks

17 (a)	eg $3 x^{2}-2 x+18 x-12\left(=3 x^{2}+16 x-12\right)$ or $x^{2}+6 x+6 x+36\left(=x^{2}+12 x+36\right)$ (allow in a table with no sign indicating +)		3	M1 for a correct method to expand two brackets with at least 3 terms correct out of 4 terms seen (or 2 terms correct out of 3 terms seen)
	$\begin{aligned} & \text { eg } 3 x^{3}+36 x^{2}+108 x-2 x^{2}-24 x-72 \text { or } \\ & 3 x^{3}+18 x^{2}+18 x^{2}+108 x-2 x^{2}-12 x-12 x-72 \\ & \text { or } \\ & 3 x^{3}+16 x^{2}-12 x+18 x^{2}+96 x-72 \text { or } \\ & 3 x^{3}-2 x^{2}+18 x^{2}-12 x+18 x^{2}-12 x+108 x-72 \end{aligned}$			M1ft ft dep on M1 and a quadratic for a correct method to multiply by the $3^{\text {rd }}$ bracket allow one further error
	Correct answer scores full marks (unless from obvious incorrect working)	$3 x^{3}+34 x^{2}+84 x-72$		A1 If no working shown then award B2 for 3 out of a maximum of 4 terms correct
	ALTERNATIVE			
	$3 x^{3}-2 x^{2}+18 x^{2}-12 x+18 x^{2}-12 x+108 x-72$		3	M2 For a complete expansion with 8 terms present of which 4 are correct (M1 for 4 correct terms from any number of terms)
		$3 x^{3}+34 x^{2}+84 x-72$		A1
	See next page for 17(b)			

17 (b)	$w^{2}=\frac{e+g}{e f-d}$		4	M1	for removing square root
	$w^{2} e f-w^{2} d=e+g$ oe			M1	for multiplying by denominator and expanding in a correct equation
	$w^{2} e f-e=g+w^{2} d$ oe			M	ft their equation dep on 2 terms in e and two other terms for gathering terms in e on one side and other terms the other side
	Correct answer scores full marks (unless from obvious incorrect working)	$e=\frac{g+w^{2} d}{w^{2} f-1}$			oe eg $e=\frac{-g-w^{2} d}{1-w^{2} f}, e=-\frac{g+w^{2} d}{1-w^{2} f}$ oe must see $e=$ on answer line or in working.
					Total 7 marks

$\mathbf{1 8}$		\mathbf{C}	3	B1 check diagrams
		\mathbf{F}		B1 check diagrams
		A		B1 check diagrams

19	$3\left(x^{2}-2 x\right) \ldots .$. or $3\left(x^{2}-2 x+\ldots ..\right)$ oe or		3		(where is any number or no number)
	$3(x-1)^{2} \ldots \ldots$ or $3\left[(x-1)^{2} \ldots \ldots.\right]$ oe				(where is any number or no number)
	Correct answer scores full marks (unless from obvious incorrect working)	$3(x-1)^{2}+2$			(if student continues to solve a quadratic equation, ISW)
					Total 3 marks
Alternative mark scheme for 19					
$19 \mathrm{ax}-2 a b x+a b^{2}+c$			3		for multiplying out $a(x-b)^{2}+\mathrm{c}$ to obtain $a x^{2}-2 a b x+a b^{2}+c$ oe
	Any 2 of the following: $a=3 \quad \text { or } \quad 2 a b=6 \quad \text { or } a b^{2}+c=5 \text { oe }$				for equating coefficients with any 2 of $a=3$ or $2 a b=6$ or $a b^{2}+c=5$ oe seen
	Correct answer scores full marks (unless from obvious incorrect working)	$3(x-1)^{2}+2$			(if student continues to solve a quadratic equation, ISW)
				Total 3 marks	

20	(RRR:) $\frac{3}{12} \times \frac{2}{11} \times \frac{1}{10}\left(=\frac{1}{220}\right)$ or $(0.25 \times 0.18 \ldots \times 0.1=0.0045 \ldots)$ ($2 \mathrm{R}, 1 \mathrm{G}$:) $\frac{3}{12} \times \frac{2}{11} \times \frac{9}{10}\left(=\frac{9}{220}\right)$ or $(0.25 \times 0.18 \ldots \times 0.9=0.0409 \ldots)$ (2G, 1R:) $\frac{3}{12} \times \frac{9}{11} \times \frac{8}{10}\left(=\frac{36}{220}=\frac{9}{55}\right)$ or $(0.25 \times 0.81 \ldots \times 0.8=0.163 \ldots)$ $\begin{aligned} & (\text { GGG: }) \frac{9}{12} \times \frac{8}{11} \times \frac{7}{10}\left(=\frac{84}{220}=\frac{21}{55}\right) \\ & (0.25 \times 0.72 \ldots \times 0.7=0.381 \ldots) \end{aligned}$		3	M1oe For an expression to find one of the stated probabilities	
	$\begin{aligned} & 1-" \frac{1}{220} "(1-" 0.0045 \ldots . ") \\ & \text { or " } \frac{84}{220} "+3 \times " \frac{36}{220} "+3 \times " \frac{9}{220} " \\ & (0.381 \ldots+3 \times 0.163 \ldots+3 \times 0.0409 \ldots) \end{aligned}$			M1o	Dep M1 Complete method
	Correct answer scores full marks (unless from obvious incorrect working)	$\frac{219}{220}$		Aloe	0.9954....allow 0.99 (99\%) or 0.995 (99.5%)
					Total 3 marks

21	$2(3 y-1)^{2}+3 y^{2}=11$	$2 x^{2}+3\left(\frac{x+1}{3}\right)^{2}=11$		5		substitution of linear equation into quadratic
	$21 y^{2}-12 y-9=0$ oe	$7 x^{2}+2 x-32=0$ oe				dep on previous M1 for multiplying out and collecting terms, forming a three term quadratic in any form of $a x^{2}+b x+c(=0)$ with at least 2 coefficients (a or b or c) correct
	$\begin{aligned} & \text { eg }(7 y+3)(y-1)=0 \\ & \frac{-(-12) \pm \sqrt{(-12)^{2}-4 \times 21 \times(-9)}}{2 \times 21} \\ & 21\left[\left(y-\frac{2}{7}\right)^{2}-\frac{4}{49}\right]-9=0 \text { oe } \\ & \text { (gives } \left.y=1, y=-\frac{3}{7}\right) \end{aligned}$	$\begin{aligned} & \operatorname{eg}(7 x+16)(x-2)=0 \\ & \frac{-(2) \pm \sqrt{(2)^{2}-4 \times 7 \times-32}}{2 \times 7} \\ & 7\left[\left(x-\frac{1}{7}\right)^{2}-\frac{1}{49}\right]-32=0 \end{aligned}$ (gives $x=2, x=-\frac{16}{7}$)				dep on M1 for solving their 3 term quadratic equation using any correct method (if factorising, allow brackets which expanded give 2 out of 3 terms correct) (if using formula allow one sign error in subst terms and some simplification - allow as far as eg $\frac{12 \pm \sqrt{144+756}}{42}$ or $\frac{-2 \pm \sqrt{4+896}}{14}$)(if completing the square allow as far as shown (allow error in final constant) or correct values for x or correct values for y
	$\text { eg } 3 \times 1-1 \text { and } 3 \times-\frac{3}{7}-1$	$\text { eg } \frac{2+1}{3} \text { and } \frac{-\frac{16}{7}+1}{3}$			M1ft	dep on previous M1 for substituting (must be shown) their 2 found values of x or y in a suitable equation (use 2 dp or better for substitution) or fully correct values for the other variable (correct labels for x / y)
	Working required		$\begin{gathered} x=2, y=1 \text { and } \\ x=-\frac{16}{7}, y=-\frac{3}{7} \end{gathered}$			dep on M2 (allow coordinates) must be paired correctly allow $x=-2.28(57 \ldots)$ and $y=-0.42(85 \ldots)$ (even if obtained from premature rounding of the other variable.)
						Total 5 marks

Angle $D B C=57.237 \ldots$ Angle $A B D=48.591 \ldots A D=6.75 \mathrm{~m} \quad C D=9.25 \mathrm{~m}$

$\mathbf{2 2}$	$B D^{2}=11^{2}-(16-y)^{2}$ and $B D^{2}=9^{2}-y^{2}$ oe		5	M1$\|$For 2 different expressions in the same single variable for $B D$ or $B D^{2}$
	$11^{2}-(16-y)^{2}=9^{2}-y^{2}(y=6.75$ or $x=9.25)$		M1 \quad Equating the 2 expressions	

$\mathbf{2 3}$	$\left(x^{2}=\right) \frac{13+6 \sqrt{5}}{2 \sqrt{5}-3}$		4	M1expression for x^{2}
	$\frac{13+6 \sqrt{5}}{2 \sqrt{5}-3} \times \frac{2 \sqrt{5}+3}{2 \sqrt{5}+3}$ or $\frac{13+6 \sqrt{5}}{2 \sqrt{5}-3} \times \frac{-2 \sqrt{5}-3}{-2 \sqrt{5}-3}$	eg $\frac{13+6 \sqrt{5}}{2 \sqrt{5}-3} \times \frac{2 \sqrt{5}+3}{2 \sqrt{5}+3}=\frac{99+44 \sqrt{5}}{11}$ or eg $\frac{13+6 \sqrt{5}}{2 \sqrt{5}-3} \times \frac{2 \sqrt{5}+3}{2 \sqrt{5}+3}=\frac{26 \sqrt{5}+39+60+18 \sqrt{5}}{20-9}$ or eg $\frac{13+6 \sqrt{5}}{2 \sqrt{5}-3} \times \frac{2 \sqrt{5}+3}{2 \sqrt{5}+3}=\frac{26 \sqrt{5}+39+12(\sqrt{5})^{2}+18 \sqrt{5}}{(2 \sqrt{5})^{2}-3^{2}}$	dep on previous M1 showing a correct product to rationalise the denominator (must be correct $\left.x^{2}\right)$	
	Working required dep on previous M1 continuing the expansion of the product on the numerator and denominator - maybe one of these forms or a combination of forms			

24	$\frac{-5-10}{4--2}\left(=-\frac{5}{2}\right)$		6	M1	A correct method to find the gradient of AC
	$y-10=-\frac{5}{2}(x+2)$ oe eg $y=-\frac{5}{2} x+5$ or $y--5=-\frac{5}{2}(x-4)$ oe or $5 x+2 y=10$ oe			M1	ft (if M1 scored) correct equation of $A C$
	$y-4=\frac{2}{5}\left(x--\frac{27}{5}\right)$ oe or $4=\frac{2}{5}\left(-\frac{27}{5}\right)+c\left(y=\frac{2}{5} x+6.16\right)$ $\frac{4-y}{-\frac{27}{5}-x}=\frac{2}{5}$ oe or $5 y-2 x=\frac{154}{5}$ oe			M1	ft (if first M1 scored) equation of $B D$ or correct equation using gradient of $B D$
	solves $-\frac{5}{2} x+5=\frac{2}{5} x+6.16$ oe eg $\begin{aligned} 10 x+4 y & =20 \\ -10 x+25 y & =154\end{aligned}$ oe, with operation of addition or $25 x+10 y=50$ $-4 x+10 y=61.6$ oe, with operation of subtraction or $x=\frac{5}{2} y-\frac{154}{10}$ oe or $y=\frac{2}{5} x+\frac{154}{25}$ oe substituted in other equation			M1	Solve equation OR Solve simultaneously the correct equations of lines of $A C$ and $B D$ or correct equation from gradient or other correct equation. If elimination: same coefficient of x or y with suitable sign used to eliminate. If substitution: x or y substituted into other equation.
	Coordinates of intersection of $A C$ and $B D: x=-\frac{2}{5}, y=6$			M1	oe value of x and y at intersection of $A C$ and $B D$
	Correct answer scores full marks (unless from obvious incorrect working)	$(4.6,8)$		A1	oe coordinates of D
	See next page for working with $A D=A B, C D=C B$ or gradients				Total 6 marks

24	$\begin{aligned} & \text { eg }(10-4)^{2}+\left(-2+\frac{27}{5}\right)^{2}(=47.56)(A B=6.896 \ldots) \text { or } \\ & \operatorname{eg}(-5-4)^{2}+\left(4+\frac{27}{5}\right)^{2}(=169.36)(C B=13.013 \ldots) \text { or } \\ & \text { eg } \frac{-5-10}{4--2} \quad \text { or } \quad \frac{4-y}{-\frac{27}{5}-x} \text { oe } \end{aligned}$		6		```A correct method to find AB 'r CB or AB or CB or a correct gradient expression for AC or DB```
	$\begin{aligned} & \text { eg }(y-10)^{2}+(x+2)^{2}=(10-4)^{2}+\left(-2+\frac{27}{5}\right)^{2} \text { or } \\ & \operatorname{eg}(y+5)^{2}+(x-4)^{2}=(-5-4)^{2}+\left(4+\frac{27}{5}\right)^{2} \text { or } \\ & \frac{-5-10}{4--2} \times \frac{4-y}{-\frac{27}{5}-x}=-1 \text { oe eg }-60+15 y=6 x+32.4 \end{aligned}$			M	Using $D(x, y)$ form a correct equation $A D^{2}=A B^{2}$ or $C D^{2}=C B^{2}$ or gradients $A C \times D B=-1(U \operatorname{sing} D(x, y))$
	eg $2 x-5 y=-30.8$ or $x=2.5 y-15.4$ or $y=0.4 x+6.16$ oe				uses rearrangement or solving simultaneous equations to find a correct 3 term linear equation
	$\begin{aligned} & \operatorname{eg}(y-10)^{2}+(2.5 y-15.4+2)^{2}=(10-4)^{2}+\left(-2+\frac{27}{5}\right)^{2} \\ & \operatorname{eg}(0.4 x+6.16+5)^{2}+(x-4)^{2}=(-5-4)^{2}+\left(4+\frac{27}{5}\right)^{2} \end{aligned}$			M	uses substitution to obtain a correct quadratic equation in one unknown
	$7.25 y^{2}-87 y+232=0$ oe or $1.16 x^{2}+0.928 x-28.8144=0$ oe				for a 3 term quadratic that can be used to find the value of x or the value of y at D
		(4.6, 8)		A	oe coordinates of D
					Total 6 marks

25	255 or 265 or 2.85 or 2.75		4	B1	for sight of a correct upper or lower bound
	$\begin{aligned} & (V=) \quad \frac{4}{3} \pi \times(2.75)^{3} \\ & \left(=\frac{1331}{48} \pi \text { or } 87.1137 \ldots\right) \end{aligned}$				calculation to find V using $V=\frac{4}{3} \pi r_{L B}{ }^{3}$ where $2.75 \leq r_{L B}<2.8$ or use of 2.85
	$(D=) \frac{265 \pi}{\frac{4}{3} \times \pi \times 2.75^{3}}$ (condone missing π for 265π (also may have cancelled out π))				method to find UB of density, using LB of V and UB of M for correct substitution into $D=\frac{\pi M_{U B}}{V_{L B}}$ where $260<M_{U B} \leq 265$ and $87.11 \ldots \leq V_{L B}<91.95 \ldots$ oe
		9.56			dep on M2 and all correct bounds used allow 9.55-9.56
					Total 4 marks

