Please check the examination details below before entering your candidate information

Pearson Edexcel International GCSE

Wednesday 15 January 2020

Morning (Time: 2 hours)	Paper Reference 4MA 1/2HR

Mathematics A

Paper 2HR
 Higher Tier

You must have:

Total Marks
Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
- there may be more space than you need.
- Calculators may be used.
- You must NOT write anything on the formulae page.

Anything you write on the formulae page will gain NO credit.

Information

- The total mark for this paper is 100.
- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

International GCSE Mathematics

Formulae sheet - Higher Tier

Arithmetic series Sum to n terms, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$	Area of trapezium $=\frac{1}{2}(a+b) h$
The quadratic equation The solutions of $a x^{2}+b x+c=0$ where $a \neq 0$ are given by: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$	
Trigonometry	In any triangle $A B C$ Sine Rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$ Cosine Rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$ Area of triangle $=\frac{1}{2} a b \sin C$
Volume of cone $=\frac{1}{3} \pi r^{2} h$ Curved surface area of cone $=\pi r l$	Volume of prism $=$ area of cross section \times length
Volume of cylinder $=\pi r^{2} h$ Curved surface area of $\mathbf{c y l i n d e r}=2 \pi r h$	Volume of sphere $=\frac{4}{3} \pi r^{3}$ Surface area of sphere $=4 \pi r^{2}$

Answer ALL TWENTY SIX questions.

Write your answers in the spaces provided.
You must write down all the stages in your working.
1 (a) Write $5^{17} \times 5^{2}$ as a single power of 5
(b) Write 800 as a product of its prime factors. Show your working clearly.

2 The table gives information about the amount of money, in $£$, that Fiona spent in a grocery store each week during 2019

Amount spent (fx)	Frequency
$0 \leqslant x<20$	5
$20 \leqslant x<40$	11
$40 \leqslant x<60$	8
$60 \leqslant x<80$	19
$80 \leqslant x<100$	9

Work out an estimate for the total amount of money that Fiona spent in the grocery store during 2019

3 Three tins, A, B and C, each contain buttons.
Tin A contains x buttons.
Tin B contains 4 times the number of buttons that $\operatorname{tin} A$ contains.
Tin C contains 7 fewer buttons than $\operatorname{tin} A$.
The total number of buttons in the three tins is 137
Work out the number of buttons in tin C.

4 The diagram shows a rectangle and a diagonal of the rectangle.

Diagram NOT accurately drawn

Work out the length of the diagonal of the rectangle.
Give your answer correct to 1 decimal place.

5 A plane takes 3 hours 36 minutes to fly from the Cayman Islands to New York. The plane flies a distance of 2470 km .

Work out the average speed of the plane in km / h.
Give your answer correct to the nearest whole number.

6 Use ruler and compasses only to construct the perpendicular bisector of the line $A B$. You must show all your construction lines.

7 Solve the simultaneous equations

$$
\begin{aligned}
& 3 x+5 y=6 \\
& 7 x-5 y=-11
\end{aligned}
$$

Show clear algebraic working.

8 Hamish buys a new car for \$20000
The car depreciates in value by 19% each year.
Work out the value of the car at the end of 3 years.
Give your answer to the nearest \$.

9 The diagram shows a box in the shape of a cuboid.

Diagram NOT accurately drawn

The box is put on a table.
The face of the box in contact with the table has length 1.2 metres and width x metres.
The force exerted by the box on the table is 27 newtons.
The pressure on the table due to the box is 30 newtons $/ \mathrm{m}^{2}$

$$
\text { pressure }=\frac{\text { force }}{\text { area }}
$$

Work out the value of x.

10 The table shows information about the surface area of each of the world's oceans.

Ocean	Surface area in square kilometres
Pacific	1.56×10^{8}
Indian	6.86×10^{7}
Southern	2.03×10^{7}
Arctic	1.41×10^{7}
Atlantic	1.06×10^{8}

(a) Work out the difference, in square kilometres, between the surface area of the Atlantic Ocean and the surface area of the Indian Ocean.
Give your answer in standard form.
square kilometres

The surface area of the Pacific Ocean is k times the surface area of the Arctic Ocean.
(b) Work out the value of k.

Give your answer correct to the nearest whole number.

$$
k=
$$

\qquad

11 (a) Write down the integer values of x that satisfy the inequality $-2<x \leqslant 4$

Diagram NOT accurately drawn
(b) Write down the three inequalities that define the region \mathbf{R}.

12 The diagram shows two congruent isosceles triangles and parts of two congruent regular polygons, \mathbf{X} and \mathbf{Y}.

Diagram NOT accurately drawn

The two regular polygons each have n sides.
Work out the value of n.

Diagram NOT accurately drawn

The diagram shows a prism $A B C D E F G H$ in which $A B C D$ is a trapezium with $B C$ parallel to $A D$ and $C D E F$ is a rectangle.
$B C=7 \mathrm{~cm} \quad A D=12 \mathrm{~cm} \quad D E=10 \mathrm{~cm}$
The height of trapezium $A B C D$ is $h \mathrm{~cm}$
The volume of the prism is $608 \mathrm{~cm}^{3}$
Work out the value of h.

14 Max kept a record of the marks he scored in each of the 11 spelling tests he took one term. Here are his marks.

$$
\begin{array}{lllllllllll}
18 & 5 & 7 & 12 & 11 & 18 & 15 & 16 & 17 & 13 & 14
\end{array}
$$

Find the interquartile range of the marks.

15 (a) Complete the table of values for $y=x^{2}-\frac{x}{2}-3$

x	-3	-2	-1	0	1	2	3
y	7.5				-2.5		4.5

(2)
(b) On the grid, draw the graph of $y=x^{2}-\frac{x}{2}-3$ for values of x from -3 to 3

(2)
(Total for Question 15 is 4 marks)

16 Cody has two bags of counters, bag A and bag B.
Each of the counters has either an odd number or an even number written on it.
There are 10 counters in bag \mathbf{A} and 7 of these counters have an odd number written on them. There are 12 counters in bag B and 7 of these counters have an odd number written on them.

Cody is going to take at random a counter from bag \mathbf{A} and a counter from bag \mathbf{B}.
(a) Complete the probability tree diagram.

Bag A

(2)
(b) Calculate the probability that the total of the numbers on the two counters will be an odd number.

Harriet also has a bag of counters.
Each of her counters also has either an odd number or an even number written on it.
Harriet is going to take at random a counter from her bag of counters.
The probability that the number on each of Cody's two counters and the number on Harriet's counter will all be even is $\frac{3}{100}$
(c) Find the least number of counters that Harriet has in her bag.

Show your working clearly.

17 Some students in a school were asked the following question.
"Do you have a $\operatorname{dog}(D)$, a cat (C) or a rabbit (R) ?"
Of these students
28 have a dog
18 have a cat
20 have a rabbit
8 have both a cat and a rabbit
9 have both a dog and a rabbit
x have both a dog and a cat
6 have a dog, a cat and a rabbit
5 have not got a dog or a cat or a rabbit
(a) Using this information, complete the Venn diagram to show the number of students in each appropriate subset.
Give the numbers in terms of x where necessary.

Given that a total of 50 students answered the question,
(b) work out the value of x.
(c) Find $\mathrm{n}\left(C^{\prime} \cap D^{\prime}\right)$

18

Diagram NOT
accurately drawn
$A P B$ and $C P D$ are chords of a circle.
$A P=9 \mathrm{~cm} \quad P B=6 \mathrm{~cm} \quad C P=8 \mathrm{~cm}$
Calculate the length of $P D$.

19 (a) Solve $\frac{4-3 x}{5}-\frac{3 x-5}{2}=-3$
Show clear algebraic working.

$$
x=
$$

\qquad
(b) Solve the inequality $5 y^{2}-17 y \leqslant 40$

20 The diagram shows two similar vases, \mathbf{A} and \mathbf{B}.

Diagram NOT accurately drawn

The height of vase \mathbf{A} is 9 cm and the height of vase \mathbf{B} is 13 cm .
Given that

$$
\text { surface area of vase } \mathbf{A}+\text { surface area of vase } \mathbf{B}=1800 \mathrm{~cm}^{2}
$$

calculate the surface area of vase \mathbf{A}.

21 (a) Simplify fully $\frac{10 x^{2}+23 x+12}{4 x^{2}-9}$
$2^{2 y} \times 2^{3 y+2}=\frac{8^{5 y}}{4^{n}}$
(b) Find an expression for n in terms of y.

Show clear algebraic working and simplify your expression.

22 The first term of an arithmetic series S is -6 The sum of the first 30 terms of S is 2865

Find the 9th term of S.

23 Express $7-12 x-2 x^{2}$ in the form $a+b(x+c)^{2}$ where a, b and c are integers.
$24 L_{1}$ and \mathbf{L}_{2} are two straight lines.
The origin of the coordinate axes is O.
\mathbf{L}_{1} has equation $5 x+10 y=8$
\mathbf{L}_{2} is perpendicular to \mathbf{L}_{1} and passes through the point with coordinates $(8,6)$
\mathbf{L}_{2} crosses the x-axis at the point A.
\mathbf{L}_{2} intersects the straight line with equation $x=-3$ at the point B.
Find the area of triangle $A O B$.
Show your working clearly.
$25 N$ is a multiple of 5
$A=N+1$
$B=N-1$
Prove, using algebra, that $A^{2}-B^{2}$ is always a multiple of 20

26 The diagram shows trapezium $O A C B$.

$\overrightarrow{O A}=3 \mathbf{a} \quad \overrightarrow{O B}=6 \mathbf{b} \quad \overrightarrow{A C}=4 \mathbf{b}$
N is the point on $O C$ such that $A N B$ is a straight line.
Find $\overrightarrow{O N}$ as a simplified expression in terms of \mathbf{a} and \mathbf{b}.

BLANK PAGE

