P Pearson Edexcel

Mark Scheme (Results)

January 2023

Pearson Edexcel International GCSE In Mathematics A (4MA1) Paper 2HR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at edexcel.com or aw.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2023
Question Paper Log Number P72444A
Publications Code 4MA1_2HR_MS_2023
All the material in this publication is copyright
© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.

Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

- Abbreviations

- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- awrt - answer which rounds to
- eeoo - each error or omission

- No working

If no working is shown then correct answers normally score full marks
If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review. If there is a choice of methods shown, mark the method that leads to the answer on the answer line; where no answer is given on the answer line, award the lowest mark from the methods shown.
If there is no answer on the answer line then check the working for an obvious answer.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

International GCSE Maths

$\mathbf{2}$ (a)		Triangle drawn at $(-1,-3)(-1,-4)(-3,-3)$	2	B2for a correct triangle with correct orientation and position If not B2 then award B1 for a correct triangle drawn with correct orientation in wrong position or triangle drawn with 2 out of 3 correct vertices
(b)		Triangle drawn at $(-4,4)(-4,5)(-2,4)$	1	B1 cao
			Total 3 marks	

4		Fully correct angle bisector with all relevant arcs shown	2	B2for a fully correct angle bisector with all relevant arcs shown
If not B2 then B1 for all arcs and no angle bisector drawn or for a correct angle bisector within the guidelines but no correct arcs or insufficient correct arcs				

6	$\text { eg } \frac{x+7}{80}=\frac{1}{4} \text { or } 4(x+7)=80 \text { or } x+7=20$		4	M1	for setting up a correct equation in terms of x only
	eg $x=80 \times \frac{1}{4}-7(=13)$ or $4 x+28=80$ and $x=\frac{80-28}{4}(=13)$ or $x=13$			M1	for a complete method to find the value of x or $x=13$. Award of this mark implies M2.
	$\begin{aligned} & \text { eg } 80-(" 13 "+7+" 13 "-11+3 \times " 13 ")(=19) \\ & \text { or } \frac{" 13 "+7+" 13 "-11+3 \times " 13 "}{80}\left(=\frac{61}{80}\right) \end{aligned}$			M1	for a method to find the number of yellow counters or $\mathrm{P}(\mathrm{R}$ or B or G$)$
	Correct answer scores full marks (unless from obvious incorrect working)	$\frac{19}{80}$		A1	oe eg accept 0.2375 or 23.75% or 0.237 or 23.7% or 0.238 or 23.8% or 0.24 or 24%
					Total 4 marks

7 (a)	$2 \times 2 \times 2 \times 5 \times 5 \text { or } 2,2,2,5,5 \text { or } 2 \times 2 \times 3 \times 5 \times 7$ or $2,2,3,5,7$ or eg		2	M1 for one number written as a product of prime factors or prime factors listed numbers may be at end of factor trees or on 'ladder diagrams' or in a table or in a Venn diagram or at least two factors for each (excluding 1, 200, 420)
	Correct answer scores full marks (unless from obvious incorrect working)	20		A1 or $2^{2} \times 5$ oe
(b)			2	M1 for $2^{m} \times 3^{n} \times 5^{p} \times 7^{q} \times 11^{r}$ with at least three of $m=3, n=2, p=2, q=2, r=1$ (all 5 terms should be seen) or omission of one term with others fully correct OR prime factors seen in a Venn diagram if so must be fully correct
	Correct answer scores full marks (unless from obvious incorrect working)	$2^{3} \times 3^{2} \times 5^{2} \times 7^{2} \times 11$		A1 allow 970200 oe
				Total 4 marks

$\mathbf{8}$	$55 \times 32(=1760)$ or $52 \times 28(=1456)$ or $55 \times 32+52 \times 28(=3216)$		3	M1for one correct product or method to find the total mark for both classes
	eg $\frac{1760 "+" 1456 "}{32+28}$ or $\frac{3216}{60}$			M1 for a complete method
				A1
	Correct answer scores full marks (unless from obvious incorrect working)	53.6		
				Total 3 marks

10	eg $\pi \times 3^{2} \times 7$ ($=63 \pi$ or 197.9...)		3		for method to find the volume of Solid A
	$\text { eg } \frac{2000}{[\operatorname{vol~A]}} \text { or } \frac{3375}{450}(=7.5 \text { oe }) \text { or } \frac{2000+3375}{[\operatorname{vol} \mathrm{~A}]+450}$			M1	(indep) for method to find the density of Solid \mathbf{A}, \mathbf{B} or \mathbf{C}, allow use of their volume for Solids \mathbf{A} and \mathbf{C}
	Correct answer scores full marks (unless from obvious incorrect working)	8.3		A1	accept $8.29-8.31$
					Total 3 marks

11	$\begin{aligned} & S C D=128^{\circ} \text { or } B C S=32^{\circ} \\ & \text { or } T S C=180-128(=52) \end{aligned}$		4	M1	angles need to be identified or may be seen marked on the diagram	M2 for $(B C D=) 128+32(=$ 160) or ($D C V=$ =) $52-$ 32 ($=20$) (may be seen marked on the diagram). To award these marks 160 or 20 must be clearly used or identified as the interior or exterior angle.
	$\begin{aligned} & \text { eg }(\operatorname{int} \angle=) 128+32(=160) \\ & \text { or }(\operatorname{ext} \angle=) 180-(128+32)(=20) \\ & \text { or }(\operatorname{ext} \angle=) " 52 "-32(=20) \end{aligned}$			M1	(dep on previous M1) for method to find the size of one interior or exterior angle, may be seen marked on the diagram.	
	eg $180(n-2)=$ " 160 " n or $360 \div$ " 20 "			M1 for setting up an equation for the sum of interior angles or $360 \div$ " 20 "		
	Working required	18		A1 dep on M2		
						Total 4 marks

12 (a)		2	1	B1
(b)		$8 a^{3}$	2	B2 for $8 a^{3}$ If not B2 then B1 for $8 a^{k}$ where $k \neq 3$ or $k a^{3}$ where $k \neq 8$
(c)	$\begin{aligned} & 5 x(3 x+4)=15 x^{2}+20 x \\ & \text { or } 5 x(2 x-1)=10 x^{2}-5 x \\ & \text { or }(3 x+4)(2 x-1)=6 x^{2}-3 x+8 x-4 \\ & \left(=6 x^{2}+5 x-4\right) \end{aligned}$		3	M1 for a correct intention to multiply all 3 factors by multiplying 2 factors only, allow one error
	$\begin{aligned} & \left(15 x^{2}+20 x\right)(2 x-1)=30 x^{3}-15 x^{2}+40 x^{2}-20 x \mathrm{oe} \\ & \left(10 x^{2}-5 x\right)(3 x+4)=30 x^{3}+40 x^{2}-15 x^{2}-20 x \mathrm{oe} \\ & 5 x\left(6 x^{2}+5 x-4\right)=30 x^{3}+25 x^{2}-20 x \mathrm{oe} \end{aligned}$			M1 (dep)ft for expanding by the third factor, allow one error (some may do the expansion in one stage and will get to $30 x^{3}-15 x^{2}+40 x^{2}-20 x$ without firstly expanding two factors - this gains M2, allow one error)
	Correct answer scores full marks (unless from obvious incorrect working)	$30 x^{3}+25 x^{2}-20 x$		A1 isw correct factorisation ($30 x^{3}+25 x^{2}-20 x$ must be seen previously to award 3 marks) eg $\begin{aligned} & 5\left(6 x^{3}+5 x^{2}-4 x\right) \\ & x\left(30 x^{2}+25 x-20\right) \\ & 5 x\left(6 x^{2}+5 x-4\right) \end{aligned}$ do not isw incorrect simplification eg $30 x^{3}+25 x^{2}-20 x=6 x^{3}+5 x^{2}-4 x$ gets M2A0
				Total 6 marks

ALTERNATIVE Q13 mark scheme (using values for L and W)

13	eg $1.2 \times x$ and $0.65 \times y$ where x and y are positive numbers		3		accept any positive values for x and y allow $(1+0.2)$ as their 1.2 and ($1-0.35$) as their 0.65
	$\begin{aligned} & \text { eg }\left(1-\frac{1.2 x \times 0.65 y}{x y}\right) \times 100 \\ & \text { or }\left(\frac{x y-1.2 x \times 0.65 y}{x y}\right) \times 100 \end{aligned}$				method to find the percentage reduction, allow the subtraction to be written the other way around eg $\left(\frac{1.2 x \times 0.65 y}{x y}-1\right) \times 100$
	Correct answer scores full marks (unless from obvious incorrect working)	22			allow -22
					Total 3 mark

14	($\angle A O C=) 132 \times 2(=264)$		3		for method to find angle at the centre. Do not award this mark if contradicted on the diagram eg if obtuse $A O C$ is labelled as 264
	$\begin{aligned} & \text { eg } \frac{" 264 "}{360} \times 2 \times \pi \times 8.5\left(=39.1 \ldots \text { or } \frac{187}{15} \pi\right) \\ & \text { or } 2 \times \pi \times 8.5-\frac{360-" 264 "}{360} \times 2 \times \pi \times 8.5\left(=39.1 \ldots \text { or } \frac{187}{15} \pi\right) \\ & \text { or } \frac{2644^{\prime}}{360} \times 2 \times \pi \times 8.5+2 \times 8.5 \\ & \text { or } 2 \times \pi \times 8.5-\frac{360-" 264 "}{360} \times 2 \times \pi \times 8.5+2 \times 8.5 \\ & \hline \end{aligned}$				for a method to find the length of $\operatorname{arc} A C$ or perimeter of the sector - allow use of their $A O C$ as long as clearly labelled
	Correct answer scores full marks (unless from obvious incorrect working)	56.2			accept 56.1-56.2
					Total 3 marks

15 (a)	$11-2$		2	M1 2 and 11 clearly identified either in list or stated
	Working required	9		A1 dep on M1
(b) (i)		Kim as she has a higher median	1	B1 oe, ft their median if value given Acceptable examples Kim as she has a higher median Kim as/because her median is $11 \mathrm{and} /$ but/whereas Rutger's is 8 Kim's median is 3 more (than Rutger's) Kim as Rutger's median is 3 less Not acceptable examples Kim's median is 11 and Rutger's is 8 Kim as she has a higher median and a lower IQR
(ii)		Kim as she has a smaller IQR	1	B1 oe, ft their part (a) Acceptable examples Kim as she has a smaller IQR Kim as/because her IQR is $5 \mathrm{and} / \mathrm{but} /$ whereas Rutger's is 9 Kim's IQR is 4 less (than Rutger's) Kim as Rutger's IQR is 4 more Not acceptable examples Kim's IQR is 5 and Rutger's is 9 Kim as she has a higher median and a lower IQR
				Total 4 marks

17 (a)	$\begin{aligned} & 15 \div 15(=1) \\ & 18 \div 5(=3.6) \\ & 32 \div 20(=1.6) \\ & 4 \div 10(=0.4) \end{aligned}$	Correct histogram	3	B3 for a fully correct histogram If not B3 then B2 for 3 correct frequency densities (can be implied by heights) or 3 correct bars drawn If not B2 then B1 for 2 correctly calculated frequency densities (can be implied by heights) or 2 correct bars drawn
				SC: award B2 for all 4 bars of correct width with heights in the correct ratio (eg drawn at $0.5,1.8,0.8,0.2$) SC: award B1 for 3 bars of correct width with heights in the correct ratio
(b)	$\begin{aligned} & \text { eg } \frac{15}{20} \times 32(=24) \text { or } \frac{5}{20} \times 32(=8) \\ & \text { or } \frac{15}{20} \times 32+18(=42) \text { or } 32+18-\frac{5}{20} \times 32(=42) \end{aligned}$		2	M1 for a method to find an estimate for the ft number of students who took between 30 and 45 minutes or between 45 and 50 minutes or between 25 and 45 minutes ft incorrect histogram
	Correct answer scores full marks (unless from obvious incorrect working)	$\frac{42}{50}$		A1 oe eg $\frac{21}{25}, 0.84,84 \%$
				Total 5 marks

19	$\begin{aligned} & \text { eg } 2 n, 2 n+2,2 n+4 \\ & \text { or } 2 n-2,2 n, 2 n+2 \text { etc } \end{aligned}$		3		for 3 consecutive even numbers in algebraic form (any letter can be used)
	eg $(2 n)^{2}+(2 n+4)^{2}\left(=4 n^{2}+4 n^{2}+16 n+16=8 n^{2}+16 n+16\right)$ or $2(2 n+2)^{2}\left(=2\left(4 n^{2}+8 n+4\right)=8 n^{2}+16 n+8\right)$ or $2(2 n+2)^{2}+8\left(=2\left(4 n^{2}+8 n+4\right)+8=8 n^{2}+16 n+16\right)$			M	for the sum of the squares of the largest and smallest even numbers and adding or the square of the middle even number multiplied by 2 (no need to expand or simplify for this mark)
	$\operatorname{eg}(2 n)^{2}+(2 n+4)^{2}=8 n^{2}+16 n+16$ and $2(2 n+2)^{2}+8=8 n^{2}+16 n+16$ or $\begin{aligned} & (2 n)^{2}+(2 n+4)^{2}=8 n^{2}+16 n+16 \\ & \text { and } 2(2 n+2)^{2}=8 n^{2}+16 n+8 \\ & \text { and } 8 n^{2}+16 n+16-\left(8 n^{2}+16 n+8\right)=8 \end{aligned}$ or $(2 n)^{2}+(2 n+4)^{2}=8 n^{2}+16 n+16$ and $8 n^{2}+16 n+16=8 n^{2}+16 n+8+8=2(2 n+2)^{2}+8$ or $\begin{aligned} & 2(2 n+2)^{2}+8=8 n^{2}+16 n+16 \text { and } \\ & 8 n^{2}+16 n+16=4 n^{2}+4 n^{2}+16 n+16=(2 n)^{2}+(2 n+4)^{2} \end{aligned}$ Working required	Correctly shown			dep on M2 for use of algebra to show correct conclusion (SCB1 for eg $(p+4)^{2}+p^{2}$ or $2(p+2)^{2}$ or $\left.2(p+2)^{2}+8\right)$ (SCB2 for use of eg $(p+4)^{2}+p^{2}=2 p^{2}+8 p+16$ and $2(p+2)^{2}+8=2 p^{2}+8 p+16$ If the student shows this and also says "it is true for all numbers, so it must be true for even numbers" oe or defines $p, p+2, p+4$ as even numbers, then this would gain M2A1
					Total 3 marks

20		Fully correct Venn diagram	4	B4 for all 8 sections correct If not B4, then award B3 for 6 or 7 sections correct B2 for 4 or 5 sections correct B1 for 2 or 3 sections correct Allow the section where 0 should be to be blank if all other sections are populated with a number.
				Total 4 marks

22	$\begin{aligned} & \mathrm{eg} \\ & 2(-3-2 x)^{2}+x^{2}=-6 x+42 \end{aligned}$	$\begin{aligned} & \text { eg } \\ & 2 y^{2}+\left(\frac{-3-y}{2}\right)^{2}=-6\left(\frac{-3-y}{2}\right)+42 \end{aligned}$	
	$\begin{aligned} & \text { eg } 9 x^{2}+30 x-24(=0) \\ & \text { or } 3 x^{2}+10 x-8(=0) \end{aligned}$ allow eg $3 x^{2}+10 x=8$	$\begin{aligned} & \text { eg } \frac{9}{4} y^{2}-\frac{3}{2} y-\frac{195}{4}(=0) \\ & \text { or } 9 y^{2}-6 y-195(=0) \\ & \text { or } 3 y^{2}-2 y-65(=0) \\ & \text { allow eg } 3 y^{2}-2 y=65 \end{aligned}$	
	eg $(3 x-2)(x+4)(=0)$ or $\frac{-10 \pm \sqrt{10^{2}-4 \times 3 \times-8}}{2 \times 3}$ or $3\left[\left(x+\frac{5}{3}\right)^{2}-\left(\frac{5}{3}\right)^{2}\right]=8$ oe (should give $\left.(x=) \frac{2}{3},-4\right)$	eg $(3 y+13)(y-5)(=0)$ or $\frac{2 \pm \sqrt{(-2)^{2}-4 \times 3 \times-65}}{2 \times 3}$ or $3\left[\left(y-\frac{1}{3}\right)^{2}-\left(\frac{1}{3}\right)^{2}\right]=65 \mathrm{oe}$ (should give $\left.(y=)-\frac{13}{3}, 5\right)$	
	$\begin{aligned} & \operatorname{eg} 2\left(" \frac{2}{3} "\right)+y=-3 \\ & \text { and } 2("-4 ")+y=-3 \end{aligned}$	$\begin{aligned} & \text { eg } 2 x+"-\frac{13}{3} "=-3 \\ & \text { and } 2 x+" 5 "=-3 \end{aligned}$	
	Working required		$\begin{aligned} & x=-4, y=5 \text { and } \\ & x=\frac{2}{3}, y=-\frac{13}{3} \end{aligned}$

M1 substitution of $y= \pm 3 \pm 2 x$ (or $x=\frac{ \pm 3 \pm y}{2}$) into $2 y^{2}+x^{2}=-6 x+42$ to obtain an equation in x only (or y only)
M1 (dep on previous M1) for multiplying out and ft collecting terms, forming a three term quadratic in any form of $a x^{2}+b x+c(=0)$ where at least 2 coefficients (a or b or c) are correct

M1 (dep on M1) method to solve their 3 term
ft quadratic using any correct method (allow one sign error and some simplification allow as far as eg $\frac{-10 \pm \sqrt{100+96}}{6}$ or $\frac{2 \pm \sqrt{4+780}}{6}$) or if factorising allow brackets which expanded give 2 out of 3 terms correct)or correct values for x (allow $0.66(6 \ldots$) or 0.67) or correct values for y (allow $-4.33(3 \ldots)$)

M1 (dep on previous M1) for substituting their 2 found values of x or y in a suitable equation (use 2dp or better for substitution) or fully correct values for the other variable (correct labels for x / y)
A1 oe (dep on M1) and a correct quadratic (allow coordinates) allow $x=0.66(6 \ldots)$ or 0.67 , $y=-4.33(3 \ldots), x=-4, y=5$

24			6	M1	for setting up an equation with volumes and some simplification (minimum of 2 terms simplified)
	$h=\frac{4 r}{k}$			M1	for finding h in terms of r and k in its simplest form (may be seen at a later stage)
	eg $l^{2}=r^{2}+\left(\frac{4 r}{k}\right)^{2}$ or $l=\sqrt{r^{2}+\left(\frac{4 r}{k}\right)^{2}}$			M1	for correct substitution into Pythagoras' theorem (accept substitution of $h=\frac{4 \pi r}{\pi k}$)
	$\begin{aligned} & \text { eg } l=r \sqrt{1+\frac{16}{k^{2}}} \text { or } l=r \sqrt{\frac{k^{2}+16}{k^{2}}} \\ & \text { or } l=r \frac{\sqrt{k^{2}+16}}{k} \end{aligned}$			M1	for rearranging and removing the r from the square root (may be seen at a later stage)
	eg $\pi r^{2}\left(\sqrt{1+\frac{16}{k^{2}}}+1\right)$			M1	for a correct expression for surface area in terms of r and k with πr^{2} removed as a factor
	Correct answer scores full marks (unless from obvious incorrect working)	$\pi r^{2}\left(\frac{k+\sqrt{k^{2}+16}}{k}\right)$		A1	
					Total 6 marks

$\mathbf{2 5}$	eg $\left(\frac{-4+2}{2}, \frac{6+3}{2}\right)$ or $(-1,4.5)$ oe	
	eg $\frac{6-3}{-4-2}\left(=\frac{3}{-6}\right)$ oe or $-\frac{1}{2}$ oe or -0.5	
	eg $m \times^{\prime \prime}-0.5^{\prime \prime}=-1$ oe or $m=2$	
	eg $y-8="-0.5^{\prime \prime}(x-(-1))$ or $8="-0.5 " \times-1+c$ or $\frac{y-8}{x-(-1)}="-0.5 "$	
	or $y-4.5=" 2^{\prime \prime}(x-(-1))$ or $4.5=' 2^{\prime \prime} \times-1+c$ or $\frac{y-4.5}{x-(-1)}=" 2 "$	
	eg $2 x+6.5=-0.5 x+7.5$ or $\frac{y-6.5}{2}=\frac{y-7.5}{-0.5}$	
	Correct answer scores full marks $($ unless from obvious incorrect working $)$	$(0.4,7.3)$

6 M1 for method to find the midpoint of $A B$
M1 for method to find the gradient of $A B$

M1 for use of $m_{1} m_{2}=-1$ to find the gradient of the line of symmetry
M1 for method to find an equation for $C D$ or the line of symmetry

M1 for a correct linear equation to find the x or y coordinate of E
A1 oe
Total 6 marks

25	$\text { eg } \frac{6-3}{-4-2}\left(=\frac{3}{-6}\right) \text { oe or }-\frac{1}{2} \text { oe or }-0.5$		6	M1 for method to find the gradient of $A B$
	eg $y-8="-0.5 "(x+1)$ or $8="-0.5 " \times-1+c$ or $\frac{y-8}{x-(-1)}={ }^{\prime \prime}-0.5 "$			M1 for method to find an equation for $C D$
	eg $\sqrt{(-1-(-4))^{2}+(8-6)^{2}}(=\sqrt{13})$			M1 for method to find the length of $A D$ or $A D^{2}$
	eg $\sqrt{(x-2)^{2}+(7.5-0.5 x-3)^{2}}=" \sqrt{13} "$ or $\sqrt{(15-2 y-2)^{2}+(y-3)^{2}}=" \sqrt{13} "$			M1 for setting up an equation for the x or y coordinate of C
	$(1.8,6.6)$ oe			M1 for the correct coordinates for C
	Correct answer scores full marks (unless from obvious incorrect working)	(0.4, 7.3)		A1 oe
				Total 6 marks

\(\left.\begin{array}{|l|l|l|l|l|}\hline 26 \& eg \frac{(4 x+3)(x-5)}{2 x-1} \times \frac{(2 x-1)(x-3)}{(x+5)(x-5)}

or eg \frac{(4 x+3)(x-3)}{x+5}(+(29-4 x))\end{array}\right]\)| 4 |
| :--- |

