edexcel

Mark Scheme (Results)

June 2011

International GCSE
Mathematics (4MB0) Paper 01

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011
Publications Code UG028414
All the material in this publication is copyright
(c) Edexcel Ltd 2011

4MB0 Summer 2011 - Paper 1

Question	Working	Notes		Mark
1.	Common difference of 5 $2,7,12,17$	M1 A1	2	2
2.	$\frac{26-2}{-3-5} \text { OR } \frac{2-26}{5+3}$ OR Solving for m $26=-3 m+c$ $2=5 m+c$ Full method for obtaining m (no slips) -3	M1 M1 A1	2	2
3.	10, 12, 14	$\begin{gathered} \mathrm{B2}(- \\ 1 \text { 1eeoo }) \\ \hline \end{gathered}$	2	2
4.	$\begin{aligned} & 3+20=8 x(\text { rem. denom. and } x \text { isolated, one } \\ & \text { arithmetical slip) } \\ & 2 \frac{7}{8} \text { OR } 2.875 \text { OR } 2.88 \text { OR } \frac{23}{8} \end{aligned}$	M1 A1	2	2
5.	3 or 7 identified as a common factor 21	M1 A1	2	2
6.	$x(x-y)+z(x-y) \quad \text { OR } \quad x(x+z)-y(x+z)$ (no slips) $(x+z)(x-y)$	M1 A1	2	2
7.	$\begin{aligned} & \frac{55.43}{115} \times 100 \text { OR } 55.43 / 1.15 \text { OR } 55.43 \times \frac{20}{23} \\ & £ 48.20 \end{aligned}$	M1 A1	2	2
8.	$\frac{x(x+2)-2 . x}{2(x+2)}$ OR $\frac{x^{2}+2 x-2 x}{2 x+4}$ OR $\quad \frac{x(x+2)}{2(x+2)}-\frac{2 x}{2(x+2)} \quad$ (no slips) $\frac{x^{2}}{2(x+2)} \text { OR } \frac{x^{2}}{2 x+4}$	M1 A1	2	2
9.	One term correctly differentiated $6 x^{2}+12 x^{-5}$	M1 A1	2	2

\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Working \& \multicolumn{2}{|c|}{Notes} \& Mark \\
\hline 10. \& \begin{tabular}{l}
\(\angle B D A=59^{\circ}\) and \(\angle A B D=59^{\circ}\) \\
\(\angle\) in same segment for one of above angles Cc inc. reason for an isos \(\Delta\) \\
NB: The last B mark is dependent on the previous two.
\end{tabular} \& \[
\begin{aligned}
\& \text { B1 } \\
\& \text { B1 } \\
\& \text { B1 }
\end{aligned}
\] \& 3 \& 3 \\
\hline 11. \& \begin{tabular}{l}
\(24-3 x<20\) (Rem. denom., one arithmetical slip) \\
NB: Use of "=" instead of inequality: award M1 once the correct inequality has been indicated eg in line below \\
\(4<3 x\) \\
(o.e) \\
2 \\
OR \\
Trial and error \\
Subs \(x=1\) and \(x=2\) into \(6-\frac{3 x}{4}\) \\
Correctly (st \(x=1\)-> 5.25 and \(x=2\)-> 4.5) \\
2
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
M1 \\
A1 \\
A1
\end{tabular} \& 3

3 \& $$
3
$$

\hline 12. \& | 540/5 (108) $\text { " } 108 " \times 12 \text { (o.e.) }$ |
| :--- |
| Other Possible Methods: $\begin{aligned} & \frac{2}{12} N \text { and } \frac{7}{12} N \\ & \frac{5}{12} N=540 \end{aligned}$ |
| OR |
| $S=$ smallest share, $L=$ largest share |
| Use of $\frac{S}{2} \quad$ OR $\frac{L}{7}$ $\frac{S}{2}=\frac{S+540}{7} \quad \text { OR } \quad \frac{L}{7}=\frac{L-540}{2}$ $\text { £ } 1296$ | \& | B1 |
| :--- |
| M1 |
| B1 |
| M1 |
| B1 |
| M1 |
| A1 | \& 3 \& 3

\hline 13. \& Using 4.5

\[
$$
\begin{aligned}
& 1 / 2 \pi \cdot 9^{2}-\pi \cdot " 4 \cdot 5^{2} \\
& 63.6 \mathrm{~cm}^{2}
\end{aligned}
$$

\] \& | B1 |
| :--- |
| M1 |
| A1 | \& 3 \& 3

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Question Number \& Working \& \multicolumn{2}{|l|}{Notes} \& Mark \\
\hline 14. \& \begin{tabular}{l}
\[
\begin{aligned}
\& \operatorname{lunII}_{A B}=\binom{6}{-8}\left(\text { or } B A=\binom{-6}{8}\right) \\
\& \sqrt{ }\left(" 6{ }^{\prime \prime 2}+" 8 \text { "2 }\right)
\end{aligned}
\] \\
10 (from completely correct working)
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
A1
\end{tabular} \& 3 \& 3 \\
\hline 15. \& \begin{tabular}{l}
240 OR 6x40 OR 48 (can be implied)
\[
3 x+102+60+30=" 240 "
\] \\
OR
\[
\frac{192+60+30+3 x}{6}=40
\] \\
16
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
A1
\end{tabular} \& 3 \& 3 \\
\hline 16. \& \begin{tabular}{l}
\[
\begin{aligned}
\& A X .3=12 \times 4 \quad \text { (o.e) } \\
\& A X=16 \\
\& A O=(" 16 "+3) / 2=9.5 \mathrm{~cm}
\end{aligned}
\] \\
OR
\[
\begin{array}{ll}
(r=A O): \& (2 r-3) \times 3=12 \times 3, \tag{1slip}\\
(x=O X): 3 \times(x+3+3)=12 \times 3, \& x=6.5 \\
A O=9.5 \mathrm{~cm} \&
\end{array}
\]
\end{tabular} \& \[
\begin{gathered}
\mathrm{M} 1 \\
\mathrm{~A} 1 \\
\mathrm{~A} 1 \mathrm{ft} \\
\\
\mathrm{M1,} \mathrm{A1} \\
\mathrm{M1}, \mathrm{~A} 1 \\
\mathrm{~A} 1 \mathrm{ft}
\end{gathered}
\] \& 3 \& \[
3
\] \\
\hline 17. \& \begin{tabular}{l}
2,9 or 11 seen \\
\(\frac{2+9}{11}\) (allow one numerical error) 1
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
A1
\end{tabular} \& 3 \& 3 \\
\hline 18. \& \begin{tabular}{l}
\[
\begin{array}{lll}
\begin{array}{l}
\text { (x }=\text { exterior angle) } \\
8 x+x=180^{\circ}
\end{array} \& \text { OR } \& 8\left(\frac{360}{n}\right)+\left(\frac{360}{n}\right)=180 \quad \text { (o.e) } \\
x=20 \& \text { OR } \& " 3240=180 n " \\
360 / " 20 " \& \text { OR } \& " 3240 / 180 " \\
n=18 \& \&
\end{array}
\] \\
OR \\
(\(e=\) interior angle)
\[
\begin{aligned}
\& e=8 \times(180-e) \\
\& e=160 \\
\& n=\frac{360}{180-" 160 "} \\
\& n=18
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
M1 DEP \\
A1 \\
M1 \\
A1 \\
M1 DEP \\
A1
\end{tabular} \& 4

4 \& 4

4

\hline
\end{tabular}

Question Number	Working	Notes		Mark
19.	$\begin{aligned} & (\sqrt{512}=) 16 \sqrt{2} \text { OR } 8 \sqrt{8} \\ & (\sqrt{72}=) 6 \sqrt{2} \text { OR } 3 \sqrt{8} \\ & 10 \sqrt{2} \\ & 10 \end{aligned}$	B1 B1 B1 B1	4	4
20.	$\begin{aligned} & 7^{2}=4^{2}+5^{2}-2 \cdot 4 \cdot 5 \cdot \cos A \\ & 2 \times 4 \times 5 \times \cos A=4^{2}+5^{2}-7^{2} \\ & \cos A=\left(4^{2}+5^{2}-7^{2}\right) / 2 \times 4 \times 5 \quad\left(=-\frac{8}{40}=-0.2\right) 0 . \end{aligned}$ NB: Allow 1 sign slip in the above 3 M marks $=102^{\circ}, 258^{\circ}, 462^{\circ}, \ldots$		4	4
21.	(a) correctly labelled line (line going through $(0,-5)$ and $(4,3)$) or correct gradient plus line going through (2.5, 0)) (b) correctly labelled line (line going though $(0,4)$ and $(4,0)$ or correct gradient plus line going through $(4,0)$) NB: (1) Penalise labelling once. (2)The lines must be sufficiently long to identify their intersection in (c) (c) $x=3$ $y=1$ NB: (1) Above values must be from their diagram. (2) Accept $(3,1)$	B1 B1 B1 ft B1 ft	1 1	4
22.	(a) $1 / 3$ OR 0.333 OR 33.3% (b) $2,3,5,7,11$ (c) correct diagram (ft on "(b)") (d) " 15 "/36 OR " $\frac{5}{12}$ " OR " 0.417 " OR" 41.7% (ie ft on " 15 " circled outcomes in (c))	B1 B1 B1 ft B1 ft	1 1 1 1	4
23.	(a) $\left(\begin{array}{ll} 17 & 12+4 a \\ 6+2 a & 8+a^{2} \end{array}\right)$ (b) $a=-3$, $\lambda=17$	B2(-1ee) B1 B1	2 2	4

\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Working \& Notes \& \& Mark \\
\hline 24. \& \begin{tabular}{lllll}
\& \& \& \\
Heights: \& 4.8, \& 7.2, \& 6.4, \& 1.1 \\
OR \& 24, \& 36, \& 32, \& 5.5
\end{tabular} \& \[
\underset{\substack{\text { B1, B1, B1 }}}{\substack{\text { B1 }}}
\] \& 4 \& 4 \\
\hline 25. \& \begin{tabular}{l}
(a) attempt at construction (3 sets of arcs seen), \\
accuracy \\
(b) attempt at construction (2 sets of arcs seen) \\
accuracy \\
(c) \(\quad 60(\pm 1) \mathrm{mm}\)
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 \\
B1
\end{tabular} \& 2

2
1 \& 5

\hline 26. \& | (a) $\frac{1}{2} \times \frac{1}{2} x \times[x+(x+4)]$ $\frac{1}{4} x(2 x+4) \quad \text { OR } \quad \frac{1}{2} x(x+2) \text { OR } 0.5 x^{2}+x$ |
| :--- |
| (b) " $2 x^{2}+4 x=4 \times 84 "$ (o.e) |
| $x^{2}+2 x-168=0$ (o.e. ie a quadratic but c.a.o) |
| $(x+14)(x-12)=0$ (o.e, method for solving 3 term quadratic) $x=12 \quad \text { (c.a.o) }$ | \& | M1 |
| :--- |
| A1 |
| M1 |
| A1 |
| M1 (INDEP) | \& 2

4 \& 6

\hline 27. \& \[
$$
\begin{aligned}
& \frac{1}{3}+\frac{1}{5}+\frac{1}{4}\left(=\frac{47}{60}\right) \\
& " 13 x / 60 "=26 \\
& 120 \\
& \text { OR } \\
& " 13 / 60 "=26 \text { blue sweets } \\
& (1 / 60=26 / 13=) 2 \\
& 40 \text { (Red) } \\
& 24 \text { (Yellow) } \\
& 30 \text { (Green) }
\end{aligned}
$$

\] \& | M1 |
| :--- |
| M1 |
| A1 |
| M1 |
| A1 |
| A1 |
| A1 |
| A1 | \& 6 \& 6

\hline
\end{tabular}

Question	Working	Not		Mark
28.	(a) three terms, at least one correctly differentiated $15+4 t-3 t^{2}$ (b) "(a)" =0 $t=3 \quad$ c.a.o from a correct eqn $s(" 3 ")$ 36	M1 A1 M1 A1 M1 DEP A1	4	6
29.	NB: Penalise ncc ONCE only in this question (a) $10 / A D=\sin 26^{\circ}$ 22.8 cm (b) $16 / " 22.8 "=\tan \angle C A D$ $35.0^{\circ} / 35.1^{\circ}$ (accept 35) (c) any correct trig/Pythagorean method for AC Eg $\sin " 35.0^{\prime \prime}=\frac{16}{A C}$ OR $A C^{2}=16^{2}+" 22.8^{\prime \prime 2}$ $(A C=27.86)$ $\frac{A B}{" 27.86 "}=\cos " 29.0 \text { " }$ OR $\quad \sin (26+" 35.0 ")=\frac{A B}{" 27.86 "}$ OR Extend $B C$ to G so that $B G$ is perpendicular to $E G$ $\begin{aligned} & D G=16 \times \cos 26 \\ & A B=10+" 16 \times \cos 26 " \end{aligned}$ 24.3/24.4 cm	M1 A1 M1 A1 M1 M1 DEP M1 M1 DEP A1	2 2 3	7

\qquad

Further copies of this publication are available from
International Regional Offices at www.edexcel.com/international

For more information on Edexcel qualifications, please visit www.edexcel.com

Alternatively, you can contact Customer Services at www.edexcel.com/ask or on + 441204770696

