

edexcel

Mark Scheme (Results)

Summer 2015

Pearson Edexcel International GCSE Mathematics B (4MB0) Paper 01R

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

Summer 2015 Publications Code UG042096 All the material in this publication is copyright © Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
 - \circ M marks: method marks
 - A marks: accuracy marks
 - B marks: unconditional accuracy marks (independent of M marks)

• Abbreviations

- cao correct answer only
- \circ ft follow through
- isw ignore subsequent working
- SC special case
- $\circ~$ oe or equivalent (and appropriate)
- \circ dep dependent
- $\circ \quad \text{indep} \text{independent}$
- eeoo each error or omission
- \circ awrt –answer which rounds to

• No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

• With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

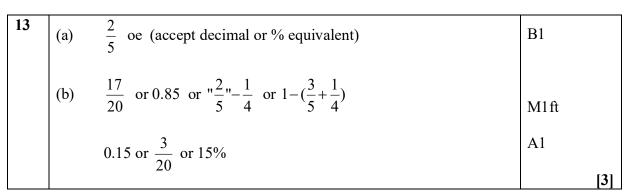
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

• Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

Question	Working	Marks
1	$\frac{22.5}{60} \times 100$	M1
	37.5(%)	A1 cao
		[2]
2	$\frac{1}{2}x = 1 - 1.25$ $2x = 4 \times 1 - 5$	M1
-	$-\frac{1}{2}$ oe	A1
		[2]
3	Either 3600 or 0.075 seen	B1
	48:1 or m = 48	B1
		[2]
4	$\frac{4 \times 2 + 3 \times 3 - 5}{6a} $ (o.e.)	M1
	$\frac{2}{a}$ oe	A1
		[2]
5	$y = \frac{x-4}{3}$ $\frac{-1-0}{4-1}$ (o.e.)	M1


$y = \frac{1}{3}$	$\frac{1}{4-1}$ (0.e.)	1711
Note: allow one error	for method	
	$m - \frac{1}{2}$	A1
	$m = -\frac{1}{3}$	
		[2]

6	f(-1)=4 and $f(0)=0$ and $f(1)=-2$	B1
Ŭ	$\{4,0,-2\}$ (in any order)	B1
		[2]

7	Attempt to factorise quadratic	M1
	(2x-3)(x+5)	A1
		[2]

8	(a) (b)		B1	
			B1	[2]
9		(-3, 5)	B1, B1	[2]
10	(a)	2	B1	
	(b)	4 (or -4)	B1	
				[2]
11		1 hour 42 mins or 102 mins	B1	
		$\frac{2}{3}$ × "102" (68 min)	M1ft	
		9:44 (pm)	A1	
				[3]
12		any one of $3\sqrt{3}$ or $4\sqrt{3}$ or $5\sqrt{3}$	B1	
		$\frac{3\sqrt{3}+4\sqrt{3}}{5\sqrt{3}}$	M1	
		7/5 or 1.4 or $1\frac{2}{5}$	A1 cao	
				[3]

14	$\frac{\frac{1}{2}BC}{12} = \sin 21^{\circ} (\text{o.e.})$ Accept x for $\frac{1}{2}BC$	M1	
	$\frac{1}{2}BC = 12 \times \sin 21$	M1 dep	
	8.60 (cm) (accept awrt 8.6)	A1 [3]	

15 (a)
$$x^2 + 2 + \frac{1}{x^2}$$
, $\frac{x^4 + 2x^2 + 1}{x^2}$ M1
Note: allow one of the three terms to be incorrect for method
 $x^2 + 2 + \frac{1}{x^2}$ (fully correct)
(b) 7 A1
B1 cao
[3]

16	$42.195 \times 1000, 2 \times 60 \times 60 + 3 \times 60 + 23$ (o.e.)	B1, B1
	$\frac{42.195 \times 1000}{2 \times 3600 + 3 \times 60 + 23}$ (o.e.)	M1
	5.70 (m/s) (Accept awrt 5.7)	A1 [3]

Gik

17	(a) (i)	5	B1	
	(ii)	4.5	B1	
	(b)	$\frac{1+2\times2+3+4+3\times5+6+x}{10} = 3\times"5"-"4.5"$	M1ft	
		72	Al	[4]

18	Rearranging ONE side of the inequalities (ignoring equality/inequality sign)	M1
	$2-3 \le 2x$ (oe) eg $-\frac{1}{2} \le x$ AND $2x < 9-3$	M1 dep
	Note: For M marks, accept 0 instead of $-\frac{1}{2}$	
	0,1,2	A2 (-1 eeoo)
	Note: A marks dependent on first M mark	
		[4]

19	(a) $\angle CAD = 90^{\circ}, \ \angle ACD = 28^{\circ}$	B1, B1
	Note: Accept angles marked on the diagram	
	$\angle CDA = 62^{\circ}$	B1
	(b) $\angle CBA = 180 - 62$ OR $90 + 28 = 118$ NB: Not ft	B1 ft
		[4]

20	$DC = \sqrt{12^2 + 5^2}$	M1
	$DC = 13 \ (\sqrt{12^2 + 5^2}) \ (13 \text{ cm})$	A1
	Area = $"13" \times "13" \times \sin 60^\circ$	M1 dep
	$146 ({\rm cm}^2)$ (awrt)	A1 [4]

21	(a)	20, 6, 16	B1, B1, B1
	(b)	numerator = $"20"+18+"6"$	
		Or denominator = "20"+18+"6"+"16"	M1ft
		$\frac{44}{60}, \frac{22}{30}, \frac{11}{15}$ (0.733) ,73.3%	A1
			[5]

22	(a)	125 (m)	B1
	(b)	$125 - 5t^2 = 0$	M1
		t = 5	A1
	(c)	$(v =) -10 \times 2$	M1
		-20 (accept 20)	A1
			[5]

23		Penalise incorrect rounding once only in the question, the first occurs.		
	(a)	$\frac{75}{360} \times r^2 \times \pi = 180$	M1 A1	
		r = 16.6 (cm)	M1	
	(b)	$\frac{75}{360} \times 2 \times \pi \times "16.6"$ +2×"16.6"	M1 dep	
		54.9 (cm)	A1	[5]

24	(a)	$x^2 = y^2 - 3y - 3y + 9$	M1
		$z^{2} = y^{2} + 2y + 2y + 4$ or $3z^{2} = 3y^{2} + 6y + 6y + 12$	M1
		$x^2 + 3z^2 - 4y^2 = 6y + 21$	A1
	(b)	"6y + 21" = 291	M1
		45	A1 [5]

25	(a)	$\frac{1}{3}h(x+4)(x-2) = 120$	M1
		$h = \frac{360}{(x+4)(x-2)} , \frac{360}{x^2 + 2x - 8}$	A1
	(b)	(x+4)(x-2) = 72 or $5(x+4)(x-2) = 360$	M1
		$x^2 + 2x - 80 = 0 \text{or} 5x^2 + 10x - 400 = 0$	A1
		Attempt to solve a quadratic	M1
		x = 8	A1 [6]

26	(a)	$1^3 - 3 \times 1^2 + k + 24 = 0$	M1
		k = -22	A1
	(b)	A quotient beginning $x^2 - 2x$	M1
		Quotient of $x^2 - 2x - 24$	A1
		Attempt to factorise quadratic	M1
		(x-1)(x+4)(x-6)	A1 cao
			[6]

27	(a)	(-1, -1)	B1
	(b)	$\begin{pmatrix} -3 & -5 & -6 \\ 1 & 4 & 2 \end{pmatrix}$	B2(-1 eeoo)
	(c)	<i>A'B''C''</i> drawn	B2 ft
	(d)	Reflection, $x = -1$ (one of these for M1, both for A1)	M1, A1
			[7]
28	(a)	3y + x = 180 OR $4x + 2y = 180$ OR $y = 3x(any ONE of these equations)$	B1
	(b)	ANOTHER of the above equations	B1
	(c)	Either: Balancing equations	M1
		Eliminating x/y	M1 dep
		Or: Making x/y the subject	
		Substituting for x (or y)	
		x = 18, y = 54	A1, A1
			[6]

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom