Please check the examination details below before entering your candidate information

Monday 7 January 2019

You must have: Ruler graduated in centimetres and millimetres, Total Marks protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided - there may be more space than you need.
- Calculators may be used.

Information

- The total mark for this paper is 100 .
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.
- Without sufficient working, correct answers may be awarded no marks.

Answer ALL TWENTY EIGHT questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

1 Express 15 centimetres as a percentage of 3 metres.

2

A

B

The diagram shows shape \mathbf{A} and shape \mathbf{B}.
Write down,
(a) the number of lines of symmetry of shape \mathbf{A},
(b) the order of rotational symmetry of shape \mathbf{B}.

3 The bearing of ship P from ship Q is 057°
Find the bearing of ship Q from ship P.

Calculate $3 \mathbf{A}+2 \mathbf{B}$

5 Without using a calculator and showing all your working, evaluate

$$
2 \frac{1}{4} \times 2 \frac{2}{3}
$$

Give your answer in its simplest form.

6 Given that $y=7 x^{2}-\frac{3}{x}$
find $\frac{\mathrm{d} y}{\mathrm{~d} x}$

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=
$$

7 Here are the first 4 terms of a sequence.
$4096 \quad-1024 \quad 256 \quad-64$
(i) Write down the next 2 terms of the sequence.
(ii) Explain how you found your answer.

8 Ying has 4 black counters and 3 white counters.
There is a number on each counter.
The mean of the numbers on the black counters is 11.5
The mean of the numbers on the white counters is 9
Calculate the mean, to 3 significant figures, of the numbers on all 7 counters.

9 Find the largest integer value of x such that $17-2 x \geqslant 4(x-5)$
Show clear algebraic working.

10 A regular polygon has n sides.
Each interior angle of the regular polygon is 135° greater than each exterior angle of the polygon.

Find the value of n.

$$
n=
$$

(Total for Question 10 is 3 marks)

11 A piece of ribbon 9 metres long is cut into 3 parts in the ratios $3: 5: 7$ by length.
Calculate the length, in metres, of the longest piece.

12 (a) Write 9.6×10^{-7} as an ordinary number.
(b) Calculate $\frac{2.4 \times 10^{199}}{9.6 \times 10^{-7}}$

Give your answer in standard form.
(2)

13 Without using a calculator and showing all your working, express

$$
\sqrt{605}-\sqrt{80}
$$

in the form \sqrt{n} where n is an integer.

14 Solve the equation

$$
5 x^{2}=7-9 x
$$

Give your solutions to 3 significant figures.
Show your working clearly.

15

The diagram shows quadrilateral $A B C D$.
The point P lies inside the quadrilateral, such that P is 5.5 cm from C and equidistant from $A D$ and $A B$.

Using ruler and compasses only and showing all your construction lines, show the point P on the diagram.
(Total for Question 15 is 4 marks)
$16 t$ varies inversely as the square of a where $a>0$ $t=14$ when $a=5$

Calculate the value of a when $t=224$

A

B

The diagram shows two similar jugs.
The height of jug \mathbf{A} is 20 cm and the height of jug \mathbf{B} is 6 cm .
Given that
volume of jug $\mathbf{A}-$ volume of jug $\mathbf{B}=1459.5 \mathrm{~cm}^{3}$
calculate the volume, in cm^{3}, of jug \mathbf{B}.
$18 \mathscr{E}=$ \{positive integers from 1 to 15 inclusive $\}$
$A=\{$ multiples of 3$\}$
$B=\{$ even numbers $\}$
(a) Find $A \cup B$

$$
\begin{equation*}
A \cup B=\{ \tag{1}
\end{equation*}
$$

(b) (i) Find $A \cap B$

$$
\begin{equation*}
A \cap B=\{ \tag{1}
\end{equation*}
$$

(ii) Find $\mathrm{n}\left([A \cap B]^{\prime}\right)$

$$
\begin{equation*}
\mathrm{n}\left([A \cap B]^{\prime}\right)= \tag{1}
\end{equation*}
$$

The set C has 8 elements and $B \cap C=\varnothing$
(c) Write down the elements of $\operatorname{set} C$.

$$
C=\{
$$

19 Solve the simultaneous equations

$$
\begin{aligned}
& 10 x+2 y=17 \\
& 15 x-3 y=39
\end{aligned}
$$

20 The coordinates of point A are $(7,2)$ and the coordinates of point B are $(-5, y)$.
The modulus of the vector $\overrightarrow{A B}$ is 13
Calculate the possible values of y.

$$
y=
$$

21 The straight line joining the points with coordinates $(-a,-22)$ and $(3 a, 38)$ has equation $y=m x+a$

Calculate the value of a and the value of m.
$a=$
$m=$

22

Diagram NOT accurately drawn

In the diagram $A C E$ and $B C D$ are straight lines such that the point C is the midpoint of $B D$.
$A B$ is parallel to $D E$.
Prove that the triangles $A B C$ and $E D C$ are congruent.

23 A right circular cone has a curved surface area of $136 \pi \mathrm{~cm}^{2}$ The radius of the base of the cone is 8 cm The volume of the cone is $k \pi \mathrm{~cm}^{3}$

Find the value of k.

24 Solve $3-\frac{x+1}{2 x^{2}+9 x-5}-\frac{2 x-1}{x+5}=1$
Show clear algebraic working.

$$
x=
$$

25 There are 20 counters in a bag.
There are 7 red counters.
The rest of the counters are green or white.
Bernard takes at random 2 counters from the bag.
The probability that Bernard will take 2 white counters is $\frac{1}{19}$
Calculate the probability that Bernard will take 1 green counter and 1 white counter.

26 The table below gives information about the lengths of time that 50 people have been waiting for a train.

Waiting time (\boldsymbol{m} minutes)	Frequency
$0<m \leqslant 5$	4
$5<m \leqslant 10$	5
$10<m \leqslant 15$	11
$15<m \leqslant 20$	8
$20<m \leqslant 25$	22

(a) Find the modal class.
(b) Find the class interval that contains the median waiting time.
(c) Calculate an estimate for the mean waiting time.

minutes

(3)

Diagram NOT accurately drawn

The diagram shows $\triangle A B C$ in which

$$
A B=(2 x-5) \mathrm{cm} \quad B C=(x+5) \mathrm{cm} \quad \angle A B C=30^{\circ}
$$

The area of $\triangle A B C$ is $15.75 \mathrm{~cm}^{2}$
Calculate the length, in cm to 3 significant figures, of $A C$.

28 (a) Factorise fully $15 x^{3} y-20 x^{2} y^{2}$
(2)
(b) Simplify fully $\frac{\left(27 x^{6}\right)^{\frac{2}{3}}}{18 x^{3}}$
(c) Given that $(x-2)$ is a factor of $2 x^{3}+3 x^{2}+k x-6$
find the value of k.
(2)

BLANK PAGE

BLANK PAGE

BLANK PAGE

