Mark Scheme (Results)

June 2011

International GCSE Mathematics (4MB0) Paper 02

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011
Publications Code UG028417
All the material in this publication is copyright
© Edexcel Ltd 2011

4MBO Summer 2011 - Paper 2

\begin{tabular}{|c|c|c|c|c|}
\hline Question number \& Scheme \& \multicolumn{3}{|c|}{Marks} \\
\hline 1. \& \begin{tabular}{ll}
(a) \& \(2500 / 625\) \\
\& 4 hrs \\
(b) \& \((2500+2500) /(" 4 "+" 3.5 ")\) \\
\& \(667 \mathrm{~km} / \mathrm{h}\)
\end{tabular} \& \[
\begin{gathered}
\hline \text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 ft }
\end{gathered}
\] \& 2
2 \& 4 \\
\hline 2. \& \begin{tabular}{l}
(a) factor of \(x\) \\
Attempt to factorise \(x^{2}-5 x+6\) or orig. cubic
\[
x(x-3)(x-2)
\] \\
(b) attempt to factorise \(2 x^{2}+2 x-24\) into two linear terms \\
One pair of factors cancelled
\[
\frac{x(x-2)}{2(x+4)} \text { OR } \frac{x^{2}-2 x}{2 x+8}
\]
\end{tabular} \& M1
M1
A1
M1
M1 dep
A1 \& 3

3 \& 6

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Question number \& Scheme \& \multicolumn{3}{|c|}{Marks} \\
\hline 3. \& \begin{tabular}{l}
Note: First three marks for angles, final mark for reasoning \\
Method 1: (using angle at centre) \\
\(\angle A O C(\) reflex \()=236^{\circ}(\angle\) at a point \()\) or \\
\(\angle A D C=62^{\circ}(\angle\) at centre \()\) \\
\(\angle A B C=118^{\circ}(\angle\) at centre/opp angles cyclic quad) \\
\(\angle B C O=62^{\circ}(\angle\) between \(/ /\) lines \()\) \\
at least two valid reasons consistent with their \(\angle\) \\
Method 2: (using isosceles triangles)
\[
\begin{aligned}
\& \angle C A O(\text { or } \angle A C O \text { or } \angle B A C)=28^{\circ} \\
\& \angle A B O(\text { or } \angle B O C)=56^{\circ} \\
\& \angle B C O=62^{\circ}
\end{aligned}
\] \\
at least two valid reasons consistent with their \(\angle \quad\) (isosceles triangle, alt angles between // lines.....)
\end{tabular} \& \begin{tabular}{l}
B1 \\
B1ft \\
B1ft \\
B1 \\
B1 \\
B1 ft \\
B1 ft \\
B1
\end{tabular} \& 4

4 \& 4

\hline 4. \& | $\left.\begin{array}{rl} \text { height of cone } & =\sqrt{ }\left(39^{2}-15^{2}\right) \\ & =36 \mathrm{~cm} \end{array}\right\} \text { volume }=\frac{1}{3} \pi \cdot . " 36 " .15^{2}+\frac{2}{3} \pi 15^{3} .$ |
| :--- |
| either volume correctly stated and with values substituted |
| $2^{\text {nd }}$ volume correctly stated with values substituted and added |
| Conclusion | \& \& 5 \& 5

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Question number \& Scheme \& \multicolumn{3}{|c|}{Marks} \\
\hline 5. \& \begin{tabular}{l}
(a) \(35-27,8\) \\
(b) \(17-\mathrm{c}\) 's(8), 9 \\
SC: \(27-(x+y)\) M1 \\
(c)
\[
\begin{aligned}
\& 3 y=35-c^{\prime} s(a)-c^{\prime} s(b) \\
\& y=6, x=12
\end{aligned}
\]
\end{tabular} \& \[
\begin{gathered}
\text { M1, A1 } \\
\text { M1, A1 ft } \\
\text { M1 } \\
\text { A1, A1 }
\end{gathered}
\] \& 2
2

3 \& 7

\hline 6. \& | (a) trapezium B |
| :--- |
| (b) trapezium C |
| (c) \quad trapezium D |
| A rotation of 90° anticlockwise about any point |
| Correctly placed trapezium (cao) |
| (d) reflection, $y=-x$ | \& \[

$$
\begin{gathered}
\text { B2(-1ee) } \\
\text { B2(-1ee) ft } \\
\text { M1 } \\
\text { A1 } \\
\text { M1, A1 }
\end{gathered}
$$
\] \& 2

2

2
2 \& 8

\hline 7. \& | (a) (i) $\frac{1}{(x+2)^{2}-9}$ $\frac{1}{x^{2}+4 x-5} \text { or } \frac{1}{(x+5)(x-1)}$ |
| :--- |
| (ii) $\quad y(x+23)=1 \quad$ OR $\quad x+23=1 / y$ $\frac{1-23 x}{x} \text { OR } \frac{1}{x}-23$ |
| (b) $\begin{aligned} & x+23=" x^{2}+4 x-5 " \\ & x^{2}+3 x-28(=0) \end{aligned}$ |
| attempt to factorise their trinomial quadratic |
| OR correct substitution into a correctly quoted formula $-7,4$ | \& | A1 |
| :--- |
| M1 |
| A1 |
| M1 |
| A1 |
| M1 |
| A1, A1 | \& 4 \&

\hline
\end{tabular}

Question number	Scheme	Marks		
8.	Accept fractional or percentage equivalents throughout. (a) (b) 0.25 (o.e.) for each correct pair			

Question	Scheme	Marks		
9.	(a) (i) $\frac{1}{2} \mathbf{a}$ (ii) $\mathbf{b}-\mathbf{a}$	B1, B1	2	
	(b) $\mathbf{a}+\frac{1}{3}(" \mathbf{b}-\mathbf{a} "), \frac{1}{3} \mathbf{b}+\frac{2}{3} \mathbf{a}$ (o.e.)	M1, A1	2	
	(c) $\quad-\frac{1}{2} \mathbf{a}+\mathbf{b}+\frac{1}{3}\left(\right.$ " $\left.\mathbf{a}-\mathbf{b}^{\prime \prime}\right), \frac{2}{3} \mathbf{b}-\frac{1}{6} \mathbf{a}$ (o.e.)	M1, A1	2	
	(d) $\lambda\left(" \frac{1}{3} \mathbf{b}+\frac{2}{3} \mathbf{a} "\right)$	B1ft	1	
	(e) $\quad " \frac{1}{2} \mathbf{a} "+\mu\left(" \frac{2}{3} \mathbf{b}-\frac{1}{6} \mathbf{a} "\right)$	M1		
	Correct expression (unsimplified)	A1	2	
	(f) Attempt at equating either coefficients of \mathbf{a} or coefficients of \mathbf{b}.	M1		
	One correct equation: $\frac{1}{2}-\frac{1}{6} \mu=\frac{2}{3} \lambda$ or $\frac{1}{3} \lambda=\frac{2}{3} \mu$	A1		
	$\mu=1 / 3, \lambda=2 / 3$	A1, A1	4	13

Question	Scheme	Marks		
10.	(a) $2 x^{2}$ or $4 x y, \quad(S=) 2 x^{2}+4 x y$	B1, B1	2	
	(b) $y=\frac{50-2 x^{2}}{4 x}$ (o.e.)	B1	1	
	(c) $\frac{50-2 x^{2}}{4 x} \cdot x^{2}+$ conclusion	B1	1	
	(d) one term correctly differentiated	M1		
	$\frac{25}{2}-\frac{3 x^{2}}{2}$	A1		
	$c^{\prime}\left(\frac{25}{2}-\frac{3 x^{2}}{2}\right)=0$	M1 dep		
	2.89	A1	4	
	(e) $23.4,24$	B1, B1	2	
	(f) graph penalties (-1) straight line segments each point missed ($\pm 1 / 2$ small square) each missed segment each point not plotted each point incorrectly plotted ($\pm 1 / 2$ small square) tramlines very poor curve i.e. line too thick	B3	3	
	(g) line drawn or two points marked on their graph consistent with the line drawn	M1		
	1.8 or 1.9, 3.8	A1ft, A1ft	3	16
	SC: No indication on the graph of any line or points identified but both points correct then M1, A1, A0			

Question		Scheme	Marks		
11.		(a) $\begin{aligned} & \left(A C^{2}=\right) 54^{2}+35^{2}-2 \times 54 \times 35 \times \cos 100^{\circ} \\ & 2916+1225+656.4 \ldots \ldots . \text { (o.e.) }\end{aligned}$			
		69.3 m	A1	3	
	(b)	Use of sine rule with correct values substituted	M1		
		$\sin \angle C A B=\frac{35 \times \sin 100}{" 69.3 "}$	M1 dep		
		29.8 ${ }^{\circ} / 29.9^{\circ}$	A1	3	
		$D B / 54=\sin \left({ }^{(} 29.8\right.$ ")	M1		
		26.8 m/26.9 m	A1 ft	2	
	(d)	$A D / 54=\cos (" 29.8$ ")	M1		
		46.9 m (awrt)	A1		
		" 69.3 " - "46.9"	B1 ft		
		Seeing " 26.8 "/2	B1 ft		
		$\left.\sqrt{ }(\text { ("22.4" })^{2}+(" 13.4 ")^{2}\right)$	M1		
		26.1/26.2 m	A1	6	
	(e)	$\mathrm{h} /\left({ }^{\text {(} 26.1 ") ~}=\tan 40\right.$	M1		
		21.9 m (Accept 22 or 22.0 m)	A1ft	2	16

\square

Further copies of this publication are available from
International Regional Offices at www.edexcel.com/international

For more information on Edexcel qualifications, please visit www.edexcel.com

Alternatively, you can contact Customer Services at www.edexcel.com/ask or on + 441204770696

Llywodraeth Cynulliad Cymru Welsh Assembly Government

