

	Loui	
Surname	Other na	ames
Edexcel International GCSE	Centre Number	Candidate Number
Mathema Paper 2 A	tics B	
Wednesday 16 May 2012 -	– Morning	Paper Reference
	•	Paper Reference 4MB0/02

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Calculators may be used.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.
- Without sufficient working, correct answers may be awarded no marks.

P 4 0 6 6 2 A 0 1 3 2

Turn over ▶

PEARSON

Answer ALL ELEVEN questions.

Write your answers in the spaces provided.

You must write down all stages in your working.

1	$\mathscr{E} = \{ x : 1 \le x \le 10 \text{ and } x \text{ is an integer } \},$	
	$A = \{ x : 1 < x < 10 \},$ $B = \{ x : 3 < x \le 5 \},$ $C = \{ x : x \text{ is an even integer } \}.$	
	Find the elements in	
	(a) A'	(1)
	(b) $B \cap C$	(1)
	(c) $(A \cap C) \cup B$	(2)
••••		

Question 1 continued	
	(Total for Question 1 is 4 marks)

2	A number of shepherds walked their sheep to the local market for sale. In total there were 104 heads. Letting x be the number of shepherds and y be the number of sheep,	
	(a) write down an equation in x and y .	(1)
	In total there were 404 legs. You may assume that each sheep has four legs and each shepherd has two legs.	
	(b) Write down a second equation in x and y .	(1)
	(c) Solve your two equations to find the number of shepherds and the number of sheep walking to the market.	(2)
		(3)
•••••		

Question 2 continued	
(Total for Question 2 is 5 marks)	

(a) Calculate the size, in degrees, of an exterior angle of a regular pentagon.	(2)
B	
Diagram NOT accurately drawn	
E F	
Figure 1	
In Figure 1, $ABCDE$ is a regular pentagon. AE is extended to the point F such that parallel to BA .	DF is
(b) Show, giving reasons, that triangle <i>DEF</i> is isosceles.	(4)

Question 3 continued	
	(Total for Question 3 is 6 marks)

4 One day a cinema showed the following four films

The Taking of Algebra 123
The Binary Knot
Carry On Subtracting
The Long Division

Diagram **NOT** accurately drawn

Figure 2

The pie chart in Figure 2 shows information about the number of people who watched each film that day.

The angle of the sector for the film *The Taking of Algebra 123* is 48° and 80 people watched this film.

(a) Calculate the total number of people who watched these four films.

(2)

The number of people who watched *The Binary Knot* was 115

(b) Calculate the angle of the sector for this film.

(2)

The ratio of the number of people who watched *Carry on Subtracting* to the number of people who watched *The Long Division* was 2:1

(c) Calculate the number people who watched *Carry on Subtracting*.

	1	- 10 -
u	=	
٦.		/

Question 4 continued	
	(Total for Question 4 is 6 marks)

5	Iftekhar travels to work each day either by bus or by train. The probability that he takes the bus is 4/5. If he takes the bus, the probability that he buys a newspaper is 3/4. If he takes the train, the probability that he buys a newspaper is 2/3.	
	(a) Draw a tree diagram to represent this information.	
		(4)
	(b) Calculate the probability that one particular day, Iftekhar will not buy a newspaper.	(3)
•••••		

Question 5 continued	
	(Total for Question 5 is 7 marks)

Figure 3

In Figure 3, $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$.

The point C is the midpoint of AB.

- (a) Find, in terms of a and b, simplifying your answer
 - (i) \overrightarrow{AB} ,
 - (ii) \overrightarrow{OC} .

(3)

The point *D* is on *OB* such that OD:DB=3:1

(b) Find, in terms of **a** and **b**, and simplifying your answer, \overrightarrow{CD} .

(3)

The point E is on OB such that $\triangle BCD$ is similar to $\triangle BAE$.

(c) Find, in terms of **a** and **b**, \overrightarrow{AE} .

(2)

(d) Write down the ratio of OE : EB in the form m : n where m and n are integers.

(1)

Question 6 continued
(Total for Question 6 is 9 marks)

Question 7 continued	
	(Total for Question 7 is 9 marks)

- 8 The points (1, -1), (4, -2) and (3, -5) are the vertices of triangle A.
 - (a) On the grid, draw and label triangle A.

(1)

Triangle A is transformed to triangle B under the transformation with matrix N where

$$\mathbf{N} = \begin{pmatrix} -2 & -1 \\ \frac{3}{2} & \frac{1}{2} \end{pmatrix}$$

(b) Find the coordinates of the vertices of B.

(2)

(c) On the grid, draw and label B.

(1)

Triangle B is transformed to triangle C under the transformation with matrix M where

$$\mathbf{M} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

(d) Find the coordinates of the vertices of C.

(2)

(e) On the grid, draw and label *C*.

(1)

(f) Describe fully the single transformation which maps triangle C onto triangle A.

(2)

Question 8 continued	

Question 8 continued	
	(Total for Question 8 is 9 marks)

9		$f: x \mapsto x^2 - 3x - 6$	
		$g: x \mapsto 2 + \frac{4}{x}$	
	(a) Find (i) f(-	4)	
	(ii) fg	$\left(\frac{1}{3}\right)$	(3)
	(b) State th	e value of x which must be excluded from any domain of g .	(1)
	(c) Find the	e values of x for which $gf(x) = 0$	(5)
	(d) Find g ⁻¹	Give your answer in the form $g^{-1}: x \mapsto \dots$	(4)
••••			

Question 9 continued	
	••

Question 9 continued

Question 9 continued	
	(Total for Question 9 is 13 marks)

Figure 4

A solid S is made by removing a hemisphere of radius r mm from each end of a solid right circular cylinder of radius r mm and length h mm as shown in Figure 4. The volume of the solid S is V mm³.

(a) Find an expression for V in terms of r and h.

(1)

The sum of the length of the cylinder and its diameter is 20 mm.

(b) Write down a formula for h in terms of r.

(1)

(c) Hence	show tha	at $V = \frac{1}{2}$	$\frac{10\pi}{3}$	$(6r^2)$	$-r^3$
			9		

- 1	71	
- 0	- Z. h	
- 1		

Question 10 continued	

Question 10 continued

(d) For $y = 6r^2 - r^3$, complete the table.

r	0	1	2	3	4	5	6
$6r^2$	0	6		54			216
-r ³	0	-1		-27			-216
у	0	5		27			0

(3)

(e) On the grid, plot the points from your completed table and join them to form a smooth curve.

(3)

(f) By drawing a suitable straight line on your grid, find the value of y when r = 3.3

(2)

Given that V = 180,

(g) use your graph to find, to one decimal place, the two possible values of r.

(4)

[Volume of sphere =
$$\frac{4}{3}\pi r^3$$

Area of circle =
$$\pi r^2$$

 	••••						

Question 10 continued

(Total for Question 10 is 16 marks)

Figure 5

In Figure 5, ABDC is a circle with centre O. The tangent at C meets BA produced at P.

PA = 6 cm, PC = 12 cm.

(a) Give a reason why $\angle OCP$ is 90°.

(1)

(b) Show that PB = 24 cm.

(2)

Given that $\angle BPC = 50^{\circ}$ find, giving all your answers to 3 significant figures,

(c) the length, in cm, of BC,

(3)

(d) the size, in degrees, of $\angle BCO$,

(4)

(e) the radius, in cm, of the circle,

(3)

(f) the area, in cm², of the sector *OBDC*.

(3)

[Cosine rule: $a^2 = b^2 + c^2 - 2bc \cos A$

Sine rule:
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Area of circle = πr^2

Question 11 continued	

Question 11 continued	
	(Total for Question 11 is 16 marks)
	TOTAL FOR PAPER IS 100 MARKS

P 4 0 6 6 2 A 0 3 0 3 2

BLANK PAGE

Do NOT write on this page.