Mark Scheme (Results)

January 2017

Pearson Edexcel International GCSE
Mathematics B (4MBO)

Paper 02

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2017
Publications Code 4MB0_02_1701_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- eeoo - each error or omission
- No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.
If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.
If there is no answer on the answer line then check the working for an obvious answer.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct. It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another

1701 4MB0_02

Mark Scheme

1(a) $3 x+2 y=80$
B1 1
(b) $8 x+5 y=204$

B1 1
(c) Rearranging so that coefficient of x or y is the same in both equations

OR isolating x or y
Subtracting or adding equations

OR subst expression for x or y to obtain y or x	M1 (DEP)		
$x=8$	A1		
$y=28$	A1	4	$\mathbf{6}$

Total 6 marks
$2(5 x+3)(x+1)=(x-2)^{2}$
(removing denominators) M1
$5 x^{2}+8 x+3=x^{2}-4 x+4$
(expanding, allow 1 error) M1(DEP)
$4 x^{2}+12 x-1(=0)$
A1
$x=\frac{-12 \pm \sqrt{12^{2}-4 \times 4 \times(-1)}}{8}$ (no errors on cand's trinomial quadratic)
M1
$\sqrt{160}(=12.649 \ldots) \quad$ (cand. must have $\mathrm{a}+\mathrm{ve}$ discriminant) B1ft
$0.08114,-3.08114 \boldsymbol{\rightarrow} \mathbf{0 . 0 8 1 1},-3.08$
A1, A1

$$
\begin{array}{ll}
\text { 3(a) } \frac{1}{x y}\left(\begin{array}{cc}
2 x & 0 \\
0 & \frac{y}{2}
\end{array}\right),\left(\begin{array}{cc}
2 / y & 0 \\
0 & 1 / 2 x
\end{array}\right) \text { (oe) } & \text { B2(-1 eeoo) } 2 \\
\text { (b) }\binom{y-2}{4}=" \frac{1}{x y}\left(\begin{array}{cc}
2 x & 0 \\
0 & \frac{y}{2}
\end{array}\right) "\binom{y}{x^{4}} & \text { M1 } \\
\left(\begin{array}{c}
\binom{2}{\frac{x^{3}}{2}}
\end{array}\right) & \text { A1 } \\
y-2=" 2 " & \text { A1 }
\end{array}
$$

(Equating elements but after a correct evaluation of the RHS using their (a))
$\left(\mathrm{OR}\left(\begin{array}{cc}\frac{y}{2} & 0 \\ 0 & 2 x\end{array}\right)\binom{y-2}{4}=\binom{y}{x^{4}}\right.$
Multiplication of LHS for obtaining at least one correct equation
$\frac{y}{2}(y-2)=y$
$8 x=x^{4}$

$$
\left.\begin{array}{l}
x=2 \tag{A1}\\
y=4
\end{array}\right\}
$$

A1, A1 57

Total 7 marks

4 (a)

5, 6, 15
11
NB: ft on " 5 " and " 6 "
(b) $10+x+" 15 "=45$
$x=20$
(cao)
(c) No of club members $=" 11 "+" 5 "+" 6 "+8+10+15+" 20 "+25$ (adding 8 subsets) $(=100)$ M1
(i) $\frac{" 11 "}{" 100 "}$
(ii) $\frac{8+" 5 "+10}{" 100 "}$

$$
\frac{23}{100}, 0.23,23 \% \quad \text { (cao) }
$$

A1 4
9

5 Selling price of 200 items $=\left(\frac{\$ 570}{300}\right) \times 200 \times \frac{120}{100}(=\$ 456)(\mathrm{oe}) \quad$ M1
Selling price of remaining 100 items $=100 \times \frac{75}{100} \times \frac{" \$ 456 "}{200}(=\$ 171.00) \quad(\mathrm{oe})$
M1 (DEP)
$"\left(\left(\frac{\$ 570}{300}\right) \times 200 \times \frac{120}{100}\right) "+"\left(100 \times \frac{75}{100} \times \frac{" \$ 456 "}{200}\right) "-\$ 570$
M1 (DEP)
[OR 200 items selling price $=\left(\frac{\$ 570}{300}\right) \times \frac{120}{100}$ each $(=\$ 2.28$ each $)(\mathrm{M} 1)$
100 items selling price $=\quad(" \$ 2.28 ") \times \frac{75}{100}$ each $\quad(=\$ 1.71$ each $) \quad($ M1 (DEP) $)$
Profit = "\$2.28" x $200+" \$ 1.71 " \times 100-\$ 570$
(M1(DEP))

OR

Profit per item on $1^{\text {st }} 200$ sold $=\frac{20}{100} \times \frac{\$ 570}{300}(=\$ 0.38)$

Remaining 100 sold at $\frac{\$ 570}{300} \times \frac{120}{100} \times \frac{75}{100}(=\$ 1.71$ each $)$
\therefore loss on each of remaining $100=\frac{\$ 570}{300}-" \$ 1.71 " \quad(=\$ 0.19) \quad((\mathrm{M} 1(\mathrm{DEP})))$
\therefore Total profit $=" \$ 0.38 " \times 200-" \$ 0.19 " \times 100$
$\$ 57.00$
(cao)
$((\mathrm{M} 1(\mathrm{DEP})))]$
A1 4
6 (a) $13 / 26,0.5,50 \%$
B1 1

NB: Award if on diagram
(b)

Correct probabilities added on $1^{\text {st }}$ branch $\quad(13 / 26,13 / 26)$
B1
Correct probabilities added on $2^{\text {nd }}$ branch $\quad(13 / 25,12 / 25)$
B1
Correct probabilities added on $3^{\text {rd }}$ branch $\quad(13 / 24,11 / 24) \quad$ B1
Correct probabilities added on $4^{\text {th }}$ branch $\quad(13 / 23,10 / 23)$
B1 4
(c) $" \frac{13}{26} " \times " \frac{13}{25} "$

M1

$$
\frac{169}{650}, \frac{13}{50}, 0.26,26 \%
$$

A1 2
(OR $1-\mathrm{P}$ (John wins with $1^{\text {st }}$ card) -P (draw)
$\left.=1-\frac{13}{26}-\frac{13}{26} \times \frac{12}{25}\right)$
(d) $" \frac{13}{26} " \times{ }^{\prime \prime} \frac{13}{25} "+" \frac{13}{26} " \times " \frac{12}{25} " \times " \frac{11}{24} " \times " \frac{13}{23}$ "

One probability product
Both probability products added
(OR 1 - P(John wins) - P(draw)
$=1-\left(\frac{13}{26}+\frac{13}{26} \times \frac{12}{25} \times \frac{13}{24}\right)-\left(\frac{13}{26} \times \frac{12}{25} \times \frac{11}{24} \times \frac{10}{23}\right)$
1- One correct bracketed term
(M1)

Above expression fully correct
$(\mathrm{M} 1(\mathrm{DEP})))$

$$
\frac{741}{2300}, \text { awrt } 0.322,32.2 \%
$$

A1 310

Total 10 marks
7 (a) $\frac{B C}{\sin 30}=\frac{20}{\sin 100}$
M1
$B C=\frac{20 \times \sin 30}{\sin 100}$
M1 (DEP)
$B C=10.154 \rightarrow$ awrt 10.2
(b) $\cos 40=\frac{" 10.2 "}{C D}$
$C D=13.255 \rightarrow$ awrt 13.3
(c) $20^{2}=12^{2}+13.26^{\prime \prime 2}-2 \times 12 \times 13.26^{\prime \prime} \times \cos \angle A D C$

M1
$\angle A D C=\cos ^{-1}\left(\frac{12^{2}+" 13.26^{\prime 2}-20^{2}}{2 \times 12 \times 13.26 "}\right)$
M1 (DEP)
$\angle A D C=104.59(104.35$ from 13.3) \rightarrow awrt 104, 105
A1 3
(d) $\triangle A D C=\frac{1}{2} \times 12 \times 113.26 " \times \sin " 104.6$ "
(oe)
M1
$=77$

A1 $2 \mathbf{1 0}$
Total 10 marks

8 (a) Triangle A drawn and labelled.
B1 1
(b) $\left(\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right)\left(\begin{array}{ccc}-3 & -2 & -1 \\ -2 & 0 & -1\end{array}\right)$ M1

Triangle B is $(-5,-8),(-2,-4),(-2,-3)$.
Triangle B drawn and labelled.
(c) Triangle C is $(-1,-6),(2,-2),(2,-1)$.

Triangle C drawn and labelled.
B2ft (-1eeoo) 2
(d) $\left(\begin{array}{cc}-1 & 1 \\ 2 & -1\end{array}\right)$ " $\left(\begin{array}{ccc}-1 & 2 & 2 \\ -6 & -2 & -1\end{array}\right)$ " M1

Triangle D is $(-5,4),(-4,6)$ and $(-3,5)$.
Triangle D drawn and labelled.
A2ft (-1eeoo) 3
(e) Translation

$$
\binom{-2}{6}
$$

B1, B1 $3 \quad \mathbf{1 2}$
(ie B1 (for -2) and B1 (for 6))
SC: -2 and 6 seen or 6 and -2 seen but not in vector form scores B1 B0
Total 12 marks

9 (a) $\overrightarrow{C B}=12 \mathbf{c}-2 \mathbf{a}$
(b) One of:
$A D / / O B \Rightarrow{ }^{\triangle}{ }_{C O B}^{C A D}$ are similar (given) $\therefore \frac{A C}{O C}=\frac{D C}{B C}=\frac{A D}{O B}$
OR Since A is midpoint of $O C$ means $\frac{A C}{O C}=\frac{1}{2}$
B1
(NB: So B1 for one of the above statements)
Then:
Having both statements means that $\frac{A C}{O C}=\frac{D C}{B C}=\frac{A D}{O B}=\frac{1}{2} \quad$ (cc) \quad B1 2
(c)(i) $\overrightarrow{A D}=6 \mathbf{c}$

B1
(ii) $\overrightarrow{O D}=\mathbf{a}+6 \mathbf{c}$

B1 2
(d) $\overrightarrow{F O}=\frac{1}{m+1}(2 \times " \overrightarrow{D A} ")$
$\overrightarrow{F D}=\overrightarrow{F O}+\overrightarrow{O D}="-\frac{12}{m+1} \mathbf{c}+" \mathbf{a}+6 \mathbf{c} \quad$ (oe)
M1(DEP)
$\left[\right.$ OR $\quad \overrightarrow{F B}=\frac{m}{m+1} 12 \mathbf{c}$
$\overrightarrow{F D}=\overrightarrow{F B}+\overrightarrow{B D}=\frac{m}{m+1} 12 \mathbf{c}-\frac{1}{2} "^{\prime}(12 \mathbf{c}-2 \mathbf{a})^{\prime \prime}$ (oe)
(M1(DEP)) $]$

(cso)

A1 3

NB: This must be a correct conclusion (watch for possible algebraic errors in the alternative method ie a correct answer cannot be obtained from incorrect working).
(e) $3=6-\frac{12}{m+1}$
$\therefore m=3$
(f) $\triangle C O B=2^{2} \times \triangle A C D \quad(=40) \quad$ (by part (b))

A1 2
M1
$\therefore \triangle F C B=\frac{" 3 "}{" 3 "+1} \Delta C O B$
M1 (DEP)
$\therefore \triangle F C B=30\left(\mathrm{~cm}^{2}\right)$

A1 313
Total 13 marks
10 (a) 3.3, 3.2, -2.5
B1, B1, B1 3
(b) -1 mark for

> straight line segments
each point missed
each missed segment
each point not plotted
each point incorrectly plotted
tramlines
very poor curve B3 3
(c) $3.296638 \rightarrow 3.3(+0.05)$

B1ft 1
(d) One of $0.8(\pm 0.05)<x$ OR $x<4.4,4.5(\pm 0.05) \quad$ B1ft
$0.8(\pm 0.05)<x<4.4,4.5(\pm 0.05) \quad$ B1ft 29
(ie a range for the $2^{\text {nd }} \mathrm{B} 1$)

11 (a) $S=\frac{1}{2} \times 4 \pi r^{2}+\left(\pi r^{2}+2 \pi r h\right)$ M1

$$
S=\pi r(3 r+2 h) \quad \text { (cso) }
$$

$$
\text { A1 } 2
$$

(b) $50=\pi r(3 r+2 h)$

M1
$h=\frac{25}{\pi r}-\frac{3 r}{2} \quad$ (cso)
A1 2
(c) $\quad V=\pi r^{2} h+\frac{1}{2} \times \frac{4}{3} \pi r^{3}$
$\therefore V=\pi r^{2}\left(\frac{25}{\pi r}-\frac{3 r}{2}\right)+\frac{1}{2} \times \frac{4}{3} \pi r^{3} \quad$ (subst. $\left.h\right) \quad$ M1 (DEP)
$\therefore V=\left(25 r-\frac{3 \pi r^{3}}{2}\right)+\frac{2}{3} \pi r^{3} \quad$ (eliminating r denominators) \quad M1 (DEP)
$V=25 r-\frac{5 \pi r^{3}}{6}$
(d) $\frac{\mathrm{d} V}{\mathrm{~d} r}=25-\frac{15 \pi r^{2}}{6}$
(cso)
A1 4
(one term)
M1
(fully correct)
A1
$\frac{\mathrm{d} V}{\mathrm{~d} r}=" 25-\frac{15 \pi r^{2}}{6} "=0$
M1 (INDEP)
Solving 2 term quadratic with no r term
M1 (DEP)
$r=+\sqrt{\frac{10}{\pi}}, \quad+1.78($ or better $\left.)\right)$
A1 $5 \mathbf{1 3}$

(

\square號
 Guk

